Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review

  • Marie-France Dignac
  • Delphine Derrien
  • Pierre Barré
  • Sébastien Barot
  • Lauric Cécillon
  • Claire Chenu
  • Tiphaine Chevallier
  • Grégoire T Freschet
  • Patricia Garnier
  • Bertrand Guenet
  • Mickaël Hedde
  • Katja Klumpp
  • Gwenaëlle Lashermes
  • Pierre-Alain Maron
  • Naoise Nunan
  • Catherine Roumet
  • Isabelle Basile-Doelsch
Review Article

Abstract

The international 4 per 1000 initiative aims at supporting states and non-governmental stakeholders in their efforts towards a better management of soil carbon (C) stocks. These stocks depend on soil C inputs and outputs. They are the result of fine spatial scale interconnected mechanisms, which stabilise/destabilise organic matter-borne C. Since 2016, the CarboSMS consortium federates French researchers working on these mechanisms and their effects on C stocks in a local and global change setting (land use, agricultural practices, climatic and soil conditions, etc.). This article is a synthesis of this consortium’s first seminar. In the first part, we present recent advances in the understanding of soil C stabilisation mechanisms comprising biotic and abiotic processes, which occur concomitantly and interact. Soil organic C stocks are altered by biotic activities of plants (the main source of C through litter and root systems), microorganisms (fungi and bacteria) and ‘ecosystem engineers’ (earthworms, termites, ants). In the meantime, abiotic processes related to the soil-physical structure, porosity and mineral fraction also modify these stocks. In the second part, we show how agricultural practices affect soil C stocks. By acting on both biotic and abiotic mechanisms, land use and management practices (choice of plant species and density, plant residue exports, amendments, fertilisation, tillage, etc.) drive soil spatiotemporal organic inputs and organic matter sensitivity to mineralisation. Interaction between the different mechanisms and their effects on C stocks are revealed by meta-analyses and long-term field studies. The third part addresses upscaling issues. This is a cause for major concern since soil organic C stabilisation mechanisms are most often studied at fine spatial scales (mm–μm) under controlled conditions, while agricultural practices are implemented at the plot scale. We discuss some proxies and models describing specific mechanisms and their action in different soil and climatic contexts and show how they should be taken into account in large scale models, to improve change predictions in soil C stocks. Finally, this literature review highlights some future research prospects geared towards preserving or even increasing C stocks, our focus being put on the mechanisms, the effects of agricultural practices on them and C stock prediction models.

Keywords

Soil organic C C dynamics Stabilisation mechanisms Mineralisation Agricultural practices Indicators Models Macrofauna Microorganisms Litter Root inputs Organomineral associations Porosity 

Notes

Acknowledgments

The authors thank all participants of the CarboSMS network meeting of 10 March 2016. We also thank everyone we interviewed on the links between practices and mechanisms (Manuel Blouin, Camille Bréal, Aurélie Cambou, Patrice Cannavo, Marie Castagnet, Annie Duparque, Sabine Houot, Thomas Lerch, Dominique Masse, Anne-Sophie Perrin, Noémie Pousse, Thomas Turini and Laure Vidal-Beaudet). This review was conducted with the financial support of ResMO (French research network on organic matter), ENS-PSL, the Geoscience Department of ENS, CNRS INSU, INRA, ANR-Dedycas and ANR-Soilμ3D. GTF and CR were supported by the EC2CO-MULTIVERS project (BIOHEFECT-MICROBIEN program, CNRS-INSU). We also thank Dr. Eric Lichtfouse (Springer) and Dr. Dominique Arrouays (Etude et Gestion des Sols) for authorising us to submit this English version of the article already published in French in Etude et Gestion des Sols (Derrien et al. 2016).

References

  1. Ainsworth E, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371. doi: 10.1111/j.1469-8137.2004.01224.x PubMedCrossRefGoogle Scholar
  2. Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15:1058–1070. doi: 10.1111/j.1461-0248.2012.01807.x PubMedCrossRefGoogle Scholar
  3. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340. doi: 10.1038/ngeo846 CrossRefGoogle Scholar
  4. Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. In: Advances in agronomy. Academic Press, Burlington, pp 155–250. doi: 10.1016/S0065-2113(08)00606-8
  5. Andreetta A, Dignac M-F, Carnicelli S (2013) Biological and physico-chemical processes influence cutin and suberin biomarker distribution in two Mediterranean forest soil profiles. Biogeochemistry 112:41–58. doi: 10.1007/s10533-011-9693-9 CrossRefGoogle Scholar
  6. Andrew C-D, Samuel A, Simon J, Margaret ST (2013) Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environmental Research Letter 8:44–49. doi: 10.1088/1748-9326/8/4/044049 CrossRefGoogle Scholar
  7. Angers DA, Arrouays D, Saby NPA, Walter C (2011) Estimating and mapping the carbon saturation deficit of French agricultural topsoils. Soil Use Manag 27:448–552. doi: 10.1111/j.1475-2743.2011.00366.x CrossRefGoogle Scholar
  8. Armas-Herrera CM, Dignac M-F, Rumpel C, Arbelo CD, Chabbi A (2016) Management effects on composition and dynamics of cutin and suberin in topsoil under agricultural use. Eur J Soil Sci 67:360–373. doi: 10.1111/ejss.12328 CrossRefGoogle Scholar
  9. Arrouays D (1994) Intérêt du fractionnement densimétrique des matières organiques en vue de la construction d’un modèle bi-compartimental d’évolution des stocks de carbone du sol. Exemple après défrichement et monoculture de maïs grain des sols de touyas. Comptes Rendus à l’Académie des Sciences, Paris, série II 318:787–793Google Scholar
  10. Arrouays D, Grundy MG, Hartemink AE, Hempel JW, Heuvelink GBM, Hong SY, Lagacherie P, Lelyk G, McBratney AB, McKenzie NJ, Mendonca-Santos ML, Minasny B, Montanarella L, IOA O, Sanchez PA, Thompson JA, Zhang G-L (2014) GlobalSoilMap: toward a fine-resolution global grid of soil properties. Adv Agron 125:93–134. doi: 10.1016/B978-0-12-800137-0.00003-0 CrossRefGoogle Scholar
  11. Attard E, Le Roux X, Charrier X, Delfosse O, Guillaumaud N, Lemaire G, Recous S (2016) Delayed and asymmetric responses of soil C pools and N fluxes to grassland/cropland conversions. Soil Biol Biochem 97:31–39. doi: 10.1016/j.soilbio.2016.02.016 CrossRefGoogle Scholar
  12. Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J (2015) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90:444–466. doi: 10.1111/brv.12119 PubMedCrossRefGoogle Scholar
  13. Balesdent J (1996) The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur J Soil Sci 47:485–493. doi: 10.1111/j.1365-2389.1996.tb01848.x
  14. Balesdent J, Arrouays D (1999) Usage des terres et stockage de carbone dans les sols du territoire français. Une estimation des flux nets annuels pour la période 1900–1999. Comptes Rendus de l'Académie d'Agriculture de. France 85(6):265–277Google Scholar
  15. Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 28:1261–1263. doi: 10.1016/0038-0717(96)00112-5 CrossRefGoogle Scholar
  16. Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230. doi: 10.1016/S0167-1987(99)00107-5 CrossRefGoogle Scholar
  17. Balesdent J, Derrien D, Fontaine S, Kirman S, Klumpp K, Loiseau P, Marol C, Nguyen C, Péan M, Personi E, Robin C (2011) Contribution de la rhizodéposition aux matières organiques du sol, quelques implications pour la modélisation de la dynamique du carbone. Etude et Gestion des Sols 18:201–216Google Scholar
  18. Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Fekiacova et Z, Fontaine S, Guenet B, Hatté C (in press) Renouvellement du carbone profond des sols cultivés: une estimation par compilation de données isotopiques. Biotechnologie Agronomie Société et EnvironnementGoogle Scholar
  19. Bardgett RD (2005) The biology of soil: a community and ecosystem approach. OUP Oxford, 256 pGoogle Scholar
  20. Barré P, Plante AF, Cécillon L, Lutfalla S, Baudin F, Bernard S, Christensen BT, Eglin T, Fernandez JM, Houot S, Kätterer T, Le Guillou C, Macdonald A, van Oort F, Chenu C (2016) The energetic and chemical signatures of persistent soil organic matter. Biogeochemistry 130:1–12. doi: 10.1007/s10533-016-0246-0 CrossRefGoogle Scholar
  21. Barré P, Durand H, Chenu C, Meunier P, Montagne D, Castel G, Billiou D, Soucémarianadin L, Cécillon L (2017) Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 285:50–56. doi: 10.1016/j.geoderma.2016.09.029 CrossRefGoogle Scholar
  22. Basile-Doelsch I, Amundson R, Stone W, Masiello C, Bottero J, Colin F, Masin F, Borschneck D, Meunier JD (2005) Mineral control of soil organic carbon dynamic in an allophanic soil (La Réunion). Eur J Soil Sci 56:689–703. doi: 10.1111/j.1365-2389.2005.00703.x Google Scholar
  23. Basile-Doelsch I, Balesdent J, Rose J (2015) Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils? Environ Sci Technol 49:3997–3998. doi: 10.1021/acs.est.5b00650 PubMedCrossRefGoogle Scholar
  24. Baumann K, Dignac M-F, Rumpel C, Bardoux G, Sarr A, Steffens M, Maron PA (2013) Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114:1–3. doi: 10.1007/s10533-012-9800-6 CrossRefGoogle Scholar
  25. Beijerinck MW (1913) De infusies en de ontdekking der bakterien. In: Jaarboek van de Koninklijke Akademie van Wetenschappen (F Müller, Amsterdam), pp 1–28Google Scholar
  26. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160. doi: 10.1038/nature03891 PubMedCrossRefGoogle Scholar
  27. Beniston JW, DuPont ST, Glover JD, Lal R, Dungait JAJ (2014) Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems. Biogeochemistry 120:37–49. doi: 10.1007/s10533-014-9980-3 CrossRefGoogle Scholar
  28. Berg B (2014) Decomposition patterns for foliar litter—a theory for influencing factors. Soil Biol Biochem 78:222–232. doi: 10.1016/j.soilbio.2014.08.005 CrossRefGoogle Scholar
  29. Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a scots pine forest VII. Can J Bot 69:1449–1456. doi: 10.1139/b91-187 CrossRefGoogle Scholar
  30. Berg B, Davey MP, De Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, De Santo AV (2010) Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100:57–73. doi: 10.1007/s10533-009-9404-y CrossRefGoogle Scholar
  31. Besnard E, Chenu C, Balesdent J, Puget P, Arrouays D (1996) Fate of particulate organic matter in soil aggregates during cultivation. Eur J Soil Sci 47:495–503. doi: 10.1111/j.1365-2389.1996.tb01849.x CrossRefGoogle Scholar
  32. Birouste M, Kazakou E, Blanchard A, Roumet C (2012) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–472. doi: 10.1093/aob/mcr297 PubMedCrossRefGoogle Scholar
  33. Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131. doi: 10.1007/s00374-008-0334-y CrossRefGoogle Scholar
  34. Bohlen JP, Pelletier MD, Groffman MP, Fahey JT, Fisk CM (2004) Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7:13–27. doi: 10.1007/s10021-003-0127-y CrossRefGoogle Scholar
  35. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631. doi: 10.1111/j.1469-8137.2004.01066.x CrossRefGoogle Scholar
  36. Bonneville S, Morgan DJ, Schmalenberger A, Bray A, Brown A, Banwart SA, Benning LG (2011) Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim Cosmochim Acta 75:6988–7005. doi: 10.1016/j.gca.2011.08.041 CrossRefGoogle Scholar
  37. Bossuyt H, Six J, Hendrix PF (2004) Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts. Eur J Soil Sci 55:393–399. doi: 10.1111/j.1351-0754.2004.00603.x CrossRefGoogle Scholar
  38. Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258. doi: 10.1016/j.soilbio.2004.07.035 CrossRefGoogle Scholar
  39. Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur J Soil Biol 36:117–125. doi: 10.1016/S1164-5563(00)01058-X CrossRefGoogle Scholar
  40. Brown GG (1995) How do earthworms affect microfloral and faunal community diversity. Plant Soil 170:209–231. doi: 10.1007/BF02183068 CrossRefGoogle Scholar
  41. Bruun TB, Elberling B, Christensen BT (2010) Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol Biochem 42:888–895. doi: 10.1016/j.soilbio.2010.01.009 CrossRefGoogle Scholar
  42. Cardinael R, Chevallier T, Barthès B, Saby N, Parent T, Dupraz C, Bernoux M, Chenu C (2015) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—a case study in a Mediterranean context. Geoderma 259-260:288–299. doi: 10.1016/j.geoderma.2015.06.015 CrossRefGoogle Scholar
  43. Chapuis-Lardy L, Brauman A, Bernard L, Pablo AL, Toucet J, Mano MJ, Weber L, Brunet D, Razafimbelo T, Chotte JL, Blanchart E (2010) Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl Soil Ecol 45:201–208. doi: 10.1016/j.apsoil.2010.04.006 CrossRefGoogle Scholar
  44. Chenu C, Plante AF (2006) Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the ‘primary organo-mineral complex’. Eur J Soil Sci 57:596–607. doi: 10.1111/j.1365-2389.2006.00834.x CrossRefGoogle Scholar
  45. Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Huang PM, Bollag JM, Senesi N (eds) Interactions between soil particles and microorganisms. Wiley and Sons, New York, pp 3–40Google Scholar
  46. Chenu C, Garnier P, Monga O, Moyano F, Pot V, Nunan N, Otten W (2014a) Predicting the response of soil organic matter microbial decomposition to moisture. Geophys Res Abstr 16:EGU2014–EG14981Google Scholar
  47. Chenu C, Klumpp K, Bispo A, Angers D, Colnenne C, Metay A (2014b) Stocker du carbone dans les sols agricoles: évaluation de leviers d’action pour la France. Innovations Agronomiques 37:23–37Google Scholar
  48. Chevallier T, Voltz M, Blanchart E, Chotte J-L, Eschenbrenner V, Mahieu M, Albrecht A (2000) Spatial and temporal changes of soil C after establishment of a pasture on a long-term cultivated vertisol (Martinique). Geoderma 94:43–58. doi: 10.1016/S0016-7061(99)00064-6 CrossRefGoogle Scholar
  49. Chevallier T, Blanchart E, Girardin C, Mariotti A, Albrecht A, Feller C (2001) The role of biological activity (roots, earthworms) in medium-term C dynamics in vertisol under a Digitaria decumbens (Gramineae) pasture. Appl Soil Ecol 16:11–21. doi: 10.1016/S0929-1393(00)00102-5 CrossRefGoogle Scholar
  50. Chevallier T, Blanchart E, Albrecht A, Feller C (2004) The physical protection of soil organic carbon in aggregates: a mechanism of carbon storage in a vertisol under pasture and market gardening (Martinique, West Indies). Agric Ecosyst Environ 103:375–387. doi: 10.1016/j.agee.2003.12.009 CrossRefGoogle Scholar
  51. Chevallier T, Woignier T, Toucet J, Blanchart E (2010) Organic carbon stabilization in the fractal pore structure of andosols. Geoderma 159:182–188. doi: 10.1016/j.geoderma.2010.07.010 CrossRefGoogle Scholar
  52. Chotte J-L, Diouf M, Assigbetse K, Lesueur D, Rabary B, Sall S (2013) Unexpected similar stability of soil microbial CO2 respiration in 20-year manured and in unmanured tropical soils. Environ Chem Lett 11:135–142. doi: 10.1007/s10311-012-0388-9 CrossRefGoogle Scholar
  53. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618. doi: 10.1126/science.1231923 PubMedCrossRefGoogle Scholar
  54. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536. doi: 10.1111/nph.13208 PubMedCrossRefGoogle Scholar
  55. Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355. doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 CrossRefGoogle Scholar
  56. Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix M, Wall DH, Parton AJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–780. doi: 10.1038/ngeo2520 CrossRefGoogle Scholar
  57. Craine JM, Wedin DA, Chapin FS, Reich PB (2003) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecol 165:85–100. doi: 10.1023/A:1021414615001 CrossRefGoogle Scholar
  58. Crow SE, Swanston CW, Lajtha K, Brooks JR, Keirstead H (2007) Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context. Biogeochemistry 85:69–90. doi: 10.1007/s10533-007-9100-8 CrossRefGoogle Scholar
  59. Curtis TP, Sloan WT (2005) Exploring microbial diversity—a vast below. Science 309:1331–1333. doi: 10.1126/science.1118176 PubMedCrossRefGoogle Scholar
  60. Decaëns T, Galvis JH, Amezquita E (2001) Properties of the structures created by ecological engineers at the soil surface of a Colombian savanna. Comptes Rendus de l’Académie des Sciences de Paris Série III—Sciences de la Vie 324:465–477. doi: 10.1016/S0764-4469(01)01313-0 Google Scholar
  61. Derrien D, Dignac M-F, Basile-Doelsch I, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Maron P-A, Nunan N, Roumet C, Barré P (2016) Stocker du C dans les sols : Quels mécanismes, quelles pratiques agricoles, quels indicateurs ? Etude et Gestion des Sols 23:193–223Google Scholar
  62. Derrien D, Marol C, Balabane M, Balesdent J (2006) The turnover of carbohydrates in a cultivated soil estimated by 13C natural abundances. Eur J Soil Sci 57:547–557. doi: 10.1111/j.1365-2389.2006.00811.x CrossRefGoogle Scholar
  63. Derrien D, Plain C, Courty P-E, Gelhaye L, Moerdijk-Poortvliet TCW, Thomas F, Versini A, Zeller B, Koutika LS, Boschker HTS, Epron D (2014) Does the addition of labile substrate destabilise old soil organic matter? Soil Biol Biochem 76:149–160. doi: 10.1016/j.soilbio.2014.04.030 CrossRefGoogle Scholar
  64. Dignac M-F, Kögel-Knabner I, Michel K, Matzner E, Knicker H (2002) Chemistry of soil organic matter as related to C/N in Norway spruce forest (Picea abies (L) karst.) floors and mineral soils. J Plant Nutr Soil Sci 165:281–289. doi: 10.1002/1522-2624(200206)165:3<281::AID-JPLN281>3.0.CO;2-A CrossRefGoogle Scholar
  65. Dimassi B, Mary B, Wylleman R, Labreuche J, Couture D, Piraux F, Cohan JP (2014) Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric Ecosyst Environ 188:134–146. doi: 10.1016/j.agee.2014.02.014 CrossRefGoogle Scholar
  66. Don A, Steinberg B, Schöning I, Pritsch K, Joschko M, Gleixner G, Schulze E-D (2008) Organic carbon sequestration in earthworm burrows. Soil Biol Biochem 40:1803–1812. doi: 10.1016/j.soilbio.2008.03.003 CrossRefGoogle Scholar
  67. Don A, Riedenbeck C, Gleixner G (2013) Unexpected control of soil carbon turnover by soil carbon concentration. Environ Chem Lett 11:407–413. doi: 10.1007/s10311-013-0433-3 CrossRefGoogle Scholar
  68. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–2088. doi: 10.1111/j.1365-2486.2012.02665.x CrossRefGoogle Scholar
  69. DuPont ST, Beniston J, Glover JD, Hodson A, Culman SW, Lal R, Ferris H (2014) Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant Soil 381:405–420. doi: 10.1007/s11104-014-2145-2 CrossRefGoogle Scholar
  70. Edmondson JI, Davies ZG, McHugh N, Gaston KJ, Leake JR (2012) Organic carbon hidden in urban ecosystems. Scientific Reports. doi: 10.1038/srep00963 PubMedPubMedCentralGoogle Scholar
  71. Eglin T, Ciais P, Piao SL, Barre P, Bellassen V, Cadule P, Chenu C, Gasser T, Koven C, Reichstein M, Smith P (2010) Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus-B 62:700–718. doi: 10.1111/j.1600-0889.2010.00499.x CrossRefGoogle Scholar
  72. Erktan A, Cécillon L, Graf F, Roumet C, Legout C, Rey F (2016) Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant Soil 398:121–137. doi: 10.1007/s11104-015-2647-6 CrossRefGoogle Scholar
  73. Etema C, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183. doi: 10.1016/S0169-5347(02)02496-5 CrossRefGoogle Scholar
  74. Falconer RE, Bown JL, White NA, Crawford JW (2007) Biomass recycling: a key to efficient foraging by fungal colonies. Oikos 116:1558–1568. doi: 10.1111/j.0030-1299.2007.15885.x CrossRefGoogle Scholar
  75. Falconer RE, Battaia G, Schmidt S, Baveye P, Chenu C, Otten W (2015) Microscale heterogeneity explains experimental variability and nonlinearity in soil organic matter mineralisation. PLoS One 10:1–12. doi: 10.1371/journal.pone.0123774 CrossRefGoogle Scholar
  76. Feller C, Chenu C (2012) Les inter-actions bio-organo-argileuses et la stabilisation du carbone dans les sols. Etude et Gestion des Sols 19:235–248Google Scholar
  77. Fernandez CW, Kennedy PG (2015) Moving beyond the black-box: fungal traits, community structure, and carbon sequestration in forest soils. New Phytol 205:1378–1380. doi: 10.1111/nph.13289 PubMedCrossRefGoogle Scholar
  78. Fernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT (2016) The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49. doi: 10.1016/j.soilbio.2015.10.017 CrossRefGoogle Scholar
  79. Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087. doi: 10.1111/j.1461-0248.2005.00813.x CrossRefGoogle Scholar
  80. Fontaine S, Bardoux G, Benest D, Verdier B, Mariotti A, Abbadie L (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320. doi: 10.1111/j.1461-0248.2004.00579.x CrossRefGoogle Scholar
  81. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. doi: 10.1038/nature06275 PubMedCrossRefGoogle Scholar
  82. Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96. doi: 10.1016/j.soilbio.2010.09.017 CrossRefGoogle Scholar
  83. Fornara DA, Steinbeiss S, McNamara NP, Gleixner G, Oakley S, Poulton PR, Macdonald AJ, Bardgett RD (2011) Increases in soil organic carbon sequestration can reduce the global warming potential of liming to permanent grassland. Glob Chang Biol 17:1925–1934. doi: 10.1111/j.1365-2486.2010.02328.x CrossRefGoogle Scholar
  84. Freschet G, Masse D, Hien E, Sall S, Chotte JL (2008) Long-term changes in organic matter and microbial properties resulting from manuring practices in an arid cultivated soil in Burkina Faso. Agric Ecosyst Environ 123:175–184. doi: 10.1016/j.agee.2007.05.012 CrossRefGoogle Scholar
  85. Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao JP, Cornelissen JHC (2013) Linking litter decomposition of above and belowground organs to plant-soil feedbacks worldwide. J Ecol 101:943–952. doi: 10.1111/1365-2745.12092 CrossRefGoogle Scholar
  86. Freschet GT, Violle, Roumet C, Garnier E (in press). Interactions entre le sol et la végétation: structure des communautés de plantes et fonctionnement du sol. In: Lemanceau P & Blouin M (Eds) Les sols au coeur de la zone critique: EcologieGoogle Scholar
  87. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353. doi: 10.1175/JCLI3800.1 CrossRefGoogle Scholar
  88. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390. doi: 10.1126/science.1112665 PubMedCrossRefGoogle Scholar
  89. Garcia-Pausas J, Casals P, Rovira P, Vallecillo S, Sebastià M-T, Romanyà J (2012) Decomposition of labelled roots and root-C and -N allocation between soil fractions in mountain grasslands. Soil Biol Biochem 49:61–69. doi: 10.1016/j.soilbio.2012.02.015 CrossRefGoogle Scholar
  90. Gardi C, Montanarella L, Arrouays D, Bispo A, Lemanceau P, Jolivet C, Mulder C, Ranjard L, Rombke J, Rutgers M, Menta C (2009) Soil biodiversity monitoring in Europe: ongoing activities and challenges. Eur J Soil Sci 60:807–819. doi: 10.1111/j.1365-2389.2009.01177.x CrossRefGoogle Scholar
  91. Garten CT (2009) A disconnect between O horizon and mineral soil carbon—implications for soil C sequestration. Acta Oecol 35:218–226. doi: 10.1016/j.actao.2008.10.004 CrossRefGoogle Scholar
  92. Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127:173–188. doi: 10.1007/s10533-016-0191-y CrossRefGoogle Scholar
  93. Gignoux J, House J, Hall D, Masse D, Nacro HB, Abbadie L (2001) Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model. Glob Ecol Biogeogr 10:639–660CrossRefGoogle Scholar
  94. Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Gruenwald T, Guo HQ, Hanan N, Haszpra L, Heilman J, Jacobs A, Jones MB, Johnson DA, Kiely G, Li SG, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana J-F, Stoy PC, Svejcar T, Tuba Z, Zhou GS (2010) Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangel Ecol Manag 63:16–39. doi: 10.1046/j.1466-822X.2001.t01-1-00250.x CrossRefGoogle Scholar
  95. Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Soil structure and carbon cycling. Aust J Soil Res 32:1043–1068. doi: 10.1071/SR9941043 CrossRefGoogle Scholar
  96. Granier A, Ceschia E, Damesin C, Dufrene E, Epron D, Gross P, Lebaube S, Le Dantec V, Le Goff N, Lemoine D, Lucot E, Ottorini J-M, Pontailler J-Y, Saugier B (2000) The carbon balance of a young beech forest. Funct Ecol 14:312–325. doi: 10.1046/j.1365-2435.2000.00434.x CrossRefGoogle Scholar
  97. Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sorensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722. doi: 10.1016/S0038-0717(01)00094-3 CrossRefGoogle Scholar
  98. Griffiths BS, Hallett PD, Kuan HL, Gregory AS, Watts CW, Whitmore AP (2008) Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biol Fertil Soils 44:745–754. doi: 10.1007/s00374-007-0257-z CrossRefGoogle Scholar
  99. Guenet B, Eglin T, Vasilyeva N, Peylin P, Ciais P, Chenu C (2013) The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles. Biogeosciences 10:2379–2392. doi: 10.5194/bg-10-2379-2013 CrossRefGoogle Scholar
  100. Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, Janssens IA (submitted) Impact of priming on global carbon emissions from soilsGoogle Scholar
  101. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi: 10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  102. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360. doi: 10.1046/j.1354-1013.2002.00486.x CrossRefGoogle Scholar
  103. Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29:189–217. doi: 10.1191/0309133305pp443ra CrossRefGoogle Scholar
  104. Haddix ML, Paul EA, Cotrufo MF (2016) Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral bonded soil organic matter. Glob Chang Biol 22:2301–2312. doi: 10.1111/gcb.13237 PubMedCrossRefGoogle Scholar
  105. Han P, Zhang W, Wang G, Sun W, Huang Y (2016) Changes in soil organic carbon in croplands subjected to fertilizer management: a global metaanalysis. Nature Scientific Reports. doi: 10.1038/srep27199 Google Scholar
  106. Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14. doi: 10.1016/j.agee.2007.07.004 CrossRefGoogle Scholar
  107. Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87. doi: 10.1023/A:1004213929699 CrossRefGoogle Scholar
  108. Hatton P-J, Remusat L, Zeller B, Brewer EA, Derrien D (2015) NanoSIMS investigation of glycine-derived C and N retention with soil organo-mineral associations. Biogeochemistry 125:303–313. doi: 10.1007/s10533-015-0138-8 CrossRefGoogle Scholar
  109. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655. doi: 10.1016/S0953-7562(09)80810-1 CrossRefGoogle Scholar
  110. He Y, Trumbore SE, Torn MS, Harden JW, Vaughn LJ, Allison SD, Randerson JT (2016) Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353:1419–1424. doi: 10.1126/science.aad4273 PubMedCrossRefGoogle Scholar
  111. Hedde M, Lavelle P, Joffre R, Jimenez JJ, Decaens T (2005) Specific functional signature in soil macro-invertebrate biostructures. Funct Ecol 19:785–793. doi: 10.1111/j.1365-2435.2005.01026.x CrossRefGoogle Scholar
  112. van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x PubMedCrossRefGoogle Scholar
  113. Hemkemeyer M, Christensen BT, Martens R, Tebbe CC (2015) Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol Biochem 90:255–265. doi: 10.1016/j.soilbio.2015.08.018 CrossRefGoogle Scholar
  114. Henin S, Dupuis M (1945) Essai de balance de la matière organique du sol. Annales Agronomiques 1:6–26Google Scholar
  115. Ho A, de Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8:1945–1948. doi: 10.1038/ismej.2014.74 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Hungate BA, van Groeningen K-J, Six J, Jastrow JD, Luo YQ, de Graaff MA, van Kessel C, Osenberg CW (2009) Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Chang Biol 15:2020–2034. doi: 10.1111/j.1365-2486.2009.01866.x CrossRefGoogle Scholar
  117. IPCC (2006) Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T and Tanabe K (eds). Published: IGES, JapanGoogle Scholar
  118. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental PanelGoogle Scholar
  119. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2006) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi: 10.1016/j.geoderma.2006.09.003 CrossRefGoogle Scholar
  120. Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322. doi: 10.1038/ngeo844 CrossRefGoogle Scholar
  121. Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Chang 80:5–23. doi: 10.1007/s10584-006-9178-3 CrossRefGoogle Scholar
  122. Jiménez JJ, Decaëns T, Lavelle P (2008) C and N concentrations in biogenic structures of a soil-feeding termite and a fungus-growing ant in the Colombian savannas. Appl Soil Ecol 40:120-128. doi: 10.1016/j.apsoil.2008.03.009 CrossRefGoogle Scholar
  123. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 CrossRefGoogle Scholar
  124. Joimel S, Cortet J, Jolivet CC, Saby NPA, Chenot ED, Branchu P, Consalès JN, Lefort C, Schwartz C (2016) Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci Total Environ 545:40–47. doi: 10.1016/j.scitotenv.2015.12.035 PubMedCrossRefGoogle Scholar
  125. Jolivet C, Arrouays D, Lévèque J, Andreux F, Chenu C (2003) Organic carbon dynamics in soil particle-size separates of temperate forest Spodosols converted to maize cropping. Eur J Soil Sci 54:257–268. doi: 10.1046/j.1365-2389.2003.00541.x CrossRefGoogle Scholar
  126. Jonard M, Nicolas M, Coomes DA, Caignet I, Saenger A, Ponette Q (2017) Forest soils in France are sequestering substantial amounts of carbon. Sci Total Environ 574:616–628. doi: 10.1016/j.scitotenv.2016.09.028 PubMedCrossRefGoogle Scholar
  127. Jones DL, Edwards AC (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30:1895–1902. doi: 10.1016/S0038-0717(98)00060-1
  128. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33. doi: 10.1007/s11104-009-9925-0 CrossRefGoogle Scholar
  129. Jouquet P, Ngo TP, Nguyen HH, Henry-des-Tureaux T, Chevallier T, Duc TT (2011) Laboratory investigation of organic matter mineralization and nutrient leaching from earthworm casts produced by Amynthas khami. Appl Soil Ecol 47:24–30. doi: 10.1016/j.apsoil.2010.11.004 CrossRefGoogle Scholar
  130. Juarez S, Nunan N, Duday A-C, Pouteau V, Schmidt S, Hapca S, Chenu C (2013) Effects of different soil structures on the decomposition of native and added organic carbon. Eur J Soil Biol 58:81–90. doi: 10.1016/j.ejsobi.2013.06.005 CrossRefGoogle Scholar
  131. Kawano M, Tomita K (2001) TEM-EDX, study of weathered layers on the surface of volcanic glass, bytownite, and hypersthene in volcanic ash from Sakurajima volcano, Japan. Am Mineral 86:284–292. doi: 10.2138/am-2001-2-311 CrossRefGoogle Scholar
  132. Keiluweit M, Nico P, Harmon ME, Mao J, Pett-Ridge J, Kleber M (2015a) Long-term litter decomposition controlled by manganese redox cycling. Proceedings of the National Academy of Sciences 112:5253–5260. doi: 10.1073/pnas.1508945112
  133. Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015b) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595. doi: 10.1038/nclimate2580 CrossRefGoogle Scholar
  134. Khomo L, Trumbore S, Bern C R, Chadwick O A (2016) Timescales of C turnover in soils with mixed crystalline mineralogies, Kruger National Park, South Africa. SOIL Discussions. doi: 10.5194/soil- 2016-31
  135. Killham K, Amato M, Ladd JN (1993) Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol Biochem 25:57–62. doi: 10.1016/0038-0717(93)90241-3 CrossRefGoogle Scholar
  136. Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24. doi: 10.1007/s10533-007-9103-5 CrossRefGoogle Scholar
  137. Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015) Chapter one—mineral-organic associations: formation, properties, and relevance in soil environments. In: Donald, LS (Ed.), Advances in agronomy. Academic Press, pp 1–140Google Scholar
  138. Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon—part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–365. doi: 10.5194/soil-1-351-2015 CrossRefGoogle Scholar
  139. Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. doi: 10.1002/jpln.200700048 CrossRefGoogle Scholar
  140. Kowalski AS, Loustau D, Berbigier P, Manca G, Tedeschi V, Borghetti M, Valentini R, Kolari P, Berninger F, Rannik U, Hari P, Rayment M, Mencuccini M, Moncrieff J, Grace J (2004) Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Glob Chang Biol 10:1707–1723. doi: 10.1111/j.1365-2486.2004.00846.x CrossRefGoogle Scholar
  141. Kulak M, Graves A, Chatterton J (2013) Reducing greenhouse gas emissions with urban agriculture: a life cycle assessment perspective. Landsc Urban Plan 111:68–78. doi: 10.1016/j.landurbplan.2012.11.007 CrossRefGoogle Scholar
  142. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review Journal of Plant Nutrition and Soil Science 163:421–431. doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R CrossRefGoogle Scholar
  143. Lal R, Augustin B (Eds.) (2011) Carbon sequestration in urban ecosystems. Springer Science & Business MediaGoogle Scholar
  144. Lal R, Griffin M, Apt J, Lave L, Morgan MG (2004) Managing soil carbon. Science 304:393. doi: 10.1126/science.1093079
  145. Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. doi: 10.1038/ncomms7707
  146. Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9:955–959. doi: 10.1111/j.1461-0248.2006.00948.x PubMedCrossRefGoogle Scholar
  147. Lashermes G, Nicolardot B, Parnaudeau V, Thuries L, Chaussod R, Guillotin ML, Lineres M, Mary B, Metzger L, Morvan T, Tricaud A, Villette C, Houot S (2009) Indicator of potential residual carbon in soils after exogenous organic matter application. Eur J Soil Sci 60:297–310. doi: 10.1111/j.1365-2389.2008.01110.x CrossRefGoogle Scholar
  148. Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I (2016) Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol. doi: 10.3389/fmicb.2016.01315 PubMedPubMedCentralGoogle Scholar
  149. Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132. doi: 10.1016/S0065-2504(08)60007-0 CrossRefGoogle Scholar
  150. Le Bayon RC, Binet F (2006) Earthworms change the distribution and availability of phosphorous in organic substrates. Soil Biol Biochem 38:235–246. doi: 10.1016/j.soilbio.2005.05.013 CrossRefGoogle Scholar
  151. Le Bissonnais Y, Cerdan O, Lecomte V, Benkhadra H, Souchère V, Martin P (2005) Variability of soil surface characteristics influencing runoff and interrill erosion. Catena 62:111–124. doi: 10.1016/j.catena.2005.05.001 CrossRefGoogle Scholar
  152. Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, Boden TA, Bopp L, Bozec Y, Canadell JG, Chini LP, Chevallier F, Cosca CE, Harris I, Hoppema M, Houghton RA, House JI, Jain AK, Johannessen T, Kato E, Keeling RF, Kitidis V, Goldewijk KK, Koven C, Landa CS, Landschutzer P, Lenton A, Lima ID, Marland G, Mathis JT, Metzl N, Nojiri Y, Olsen A, Ono T, Peng S, Peters W, Pfeil B, Poulter B, Raupach MR, Regnier P, Rodenbeck C, Saito S, Salisbury JE, Schuster U, Schwinger J, Seferian R, Segschneider J, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Werf GR, Viovy N, Wang YP, Wanninkhof R, Wiltshire A, Zeng N (2015) Global carbon budget 2014. Earth System Science Data 7:47–85. doi: 10.5194/essd-7-349-2015 CrossRefGoogle Scholar
  153. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. doi: 10.1038/nature16069 PubMedCrossRefGoogle Scholar
  154. Levard C, Doelsch E, Basile-Doelsch I, Abidin Z, Miche H, Masion A, Rose J, Borschneck D, Bottero JY (2012) Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma 183-184:100–108. doi: 10.1016/j.geoderma.2012.03.015 CrossRefGoogle Scholar
  155. Li Q, Yu PJ, Li GD, Zhou DW (2016) Grass-legume ratio can change soil carbon and nitrogen storage in a temperate steppe grassland. Soil Tillage Res 157:23–31. doi: 10.1016/j.still.2015.08.021 CrossRefGoogle Scholar
  156. Lienhard P, Terrat S, Mathieu O, Levêque J, Chemidlin Prévost-Bouré N, Nowak V, Régnier T, Faivre C, Sayphoummie S, Panyasiri K, Tivet F, Ranjard L, Maron P-A (2013) Soil microbial diversity and C turnover modified by tillage and cropping in Laos tropical grassland. Environ Chem Lett 11:391–398. doi: 10.1007/s10311-013-0420-8 CrossRefGoogle Scholar
  157. Löhnis F (1926) Nitrogen availability of green manures. Soil Sci 22:253–290CrossRefGoogle Scholar
  158. Lubbers IM, van Groenigen KJ, Fonte SJ, Six J, Brussaard L, van Groenigen JW (2013) Greenhouse-gas emissions from soils increased by earthworms. Nat Clim Chang 3:1–8. doi: 10.1038/NCLIMATE1692 CrossRefGoogle Scholar
  159. Luo Z, Wang E, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments agriculture. Ecosystems and Environment 139:224–231. doi: 10.1016/j.agee.2010.08.006 CrossRefGoogle Scholar
  160. Luo Y, Ahlström A, Allison SD, Batjes NH, Brovkin V, Carvalhais N, Chappell A, Ciais P, Davidson EA, Finzi A, Georgiou K, Guenet B, Hararuk O, Harden JW, Il Y, Hopkins F, Jiang L, Koven C, Jackson RB, Jones CD, Lara MJ, Liang J, McGuire AD, Parton W, Peng C, Randerson JT, Salazar A, Sierra CA, Smith MJ, Tian H, Todd-Brown KEO, Déchiré M, van Groenigen KJ, Wang YP, Ouest TO, Wei Y, Wieder WR, Xia J, Xia X, Xiaofeng X, Zhou T (2016) Toward more realistic projections of soil carbon dynamics by earth system models. Glob Biogeochem Cycles 30:40–56. doi: 10.1002/2015GB005239 CrossRefGoogle Scholar
  161. Lutfalla S (2015) Persistance à long terme des matières organiques dans les sols: caractérisation chimique et contrôle minéralogique. Thèse de doctorat en Sciences de l’Environnement. Université Paris SaclayGoogle Scholar
  162. von Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberg G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124. doi: 10.1002/jpln.200700047 CrossRefGoogle Scholar
  163. Machinet GE, Bertrand I, Barriere Y, Chabbert B, Recous S (2011) Impact of plant cell wall network on biodegradation in soil: role of lignin composition and phenolic acids in roots from 16 maize genotypes. Soil Biol Biochem 43:1544–1552. doi: 10.1016/j.soilbio.2011.04.002 CrossRefGoogle Scholar
  164. Manlay RJ, Freschet GT, Abbadie L, Barbier B, Chotte J-L, Feller C, Leroy M, Serpantié G (2016) Séquestration du C et usage durable des terres en savane ouest-africaine: synergie ou antagonisme? In: Sall S, Bernoux M, Brossard M (Eds.) Carbone des sols d’Afrique et de Madagascar et pratiques de gestionGoogle Scholar
  165. Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91. doi: 10.1111/j.1469-8137.2012.04225.x PubMedCrossRefGoogle Scholar
  166. Mariani L, Jimenez JJ, Asakawa N, Thomas RJ, Decaens T (2007a) What happens to earthworm casts in the soil? A field study of C and N dynamics in neotropical savannahs. Soil Biol Biochem 39:757–767. doi: 10.1016/j.soilbio.2006.09.023 CrossRefGoogle Scholar
  167. Mariani L, Jimenez JJ, Torres EA, Amezquita E, Decaens T (2007b) Rainfall impact effects on ageing casts of a tropical anecic earthworm. Eur J Soil Sci 58:1525–1534. doi: 10.1111/j.1365-2389.2007.00960.x CrossRefGoogle Scholar
  168. Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53:486–493. doi: 10.1007/s00248-006-9196-8 PubMedCrossRefGoogle Scholar
  169. Maron PA, Mougel C, Ranjard L (2011) Soil microbial diversity: spatial overview, driving factors and functional interest. Comptes Rendus de l'Académie des Sciences, Paris, Biologie, Série II 334:403–411. doi: 10.1016/j.crvi.2010.12.003 Google Scholar
  170. Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110. doi: 10.1002/jpln.200700049 CrossRefGoogle Scholar
  171. Martens DA (2000) Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol Biochem 32:361–369. doi: 10.1016/S0038-0717(99)00162-5 CrossRefGoogle Scholar
  172. Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D (2011) Spatial distribution of soil organic carbon stocks in France. Biogeosciences 8:1053–1065. doi: 10.5194/bg-8-1053-2011 CrossRefGoogle Scholar
  173. Martins MR, Angers DA (2015) Different plant types for different soil ecosystem services. Geoderma 237-238:266–269. doi: 10.1016/j.geoderma.2014.09.013 CrossRefGoogle Scholar
  174. Mathieu JA, Hatté C, Balesdent J, Parent E (2015) Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Glob Chang Biol 21:4278–4292. doi: 10.1111/gcb.13012 PubMedCrossRefGoogle Scholar
  175. McGill WB (1996) In Evaluation of soil organic matter models, eds Powlson DS, Smith P, Smith JU (Springer, Rothamsted), pp 111–132Google Scholar
  176. Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162. doi: 10.1038/nature08017 PubMedCrossRefGoogle Scholar
  177. Mendez-Millan M, Dignac M-F, Rumpel C, Rasse DP, Derenne S (2010) Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling. Soil Biol Biochem 42:169–177. doi: 10.1016/j.soilbio.2009.10.010 CrossRefGoogle Scholar
  178. Mendez-Millan M, Dignac M-F, Rumpel C, Rasse DP, Bardoux G, Derenne S (2012) Contribution of maize root derived-C to soil organic carbon throughout an agricultural soil profile assessed by compound-specific 13C analysis. Org Geochem 42:1502–1511. doi: 10.1016/j.orggeochem.2011.02.008 CrossRefGoogle Scholar
  179. Mikutta R, Kleber M, Torn M, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. doi: 10.1007/s10533-005-0712-6 CrossRefGoogle Scholar
  180. Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM (2005) Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–2204. doi: 10.1016/j.soilbio.2005.03.021 CrossRefGoogle Scholar
  181. Miltner A, Bombach P, Schmidt-Brucken B, Kastner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55. doi: 10.1007/s10533-011-9658-z CrossRefGoogle Scholar
  182. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z-S, Cheng K, Das BS, Fielda DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O'Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C-C, Vågen T-G, van Wesemael B, Winowiecki L (2017) Soil carbon 4 per mille. Geoderma 292:59–86. doi: 10.1016/j.geoderma.2017.01.002 CrossRefGoogle Scholar
  183. Monard C, Mchergui C, Nunan N, Martin-Laurent F, Vieublé-Gonod L (2012) Impact of soil matric potential on the fine-scale spatial distribution and activity of specific microbial degrader communities. FEMS Microbiol Ecol 81:673–683. doi: 10.1111/j.1574-6941.2012.01398.x PubMedCrossRefGoogle Scholar
  184. Monga O, Bousso M, Garnier P, Pot V (2008) 3-D geometrical structures and biological activity: application to soil organic matter microbial decomposition in pore space. Ecol Model 216:291–302. doi: 10.1016/j.ecolmodel.2008.04.015 CrossRefGoogle Scholar
  185. Monga O, Garnier P, Pot V, Coucheney E, Nunan N, Otten W, Chenu C (2014) Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC. Biogeosciences 11:2201–2209. doi: 10.5194/bg-11-2201-2014 CrossRefGoogle Scholar
  186. Moni C, Derrien D, Hatton PJ, Zeller B, Kleber M (2012) Density fractions versus size separates: does physical fractionation isolate functional soil compartments? Biogeosciences 9:5181–5197. doi: 10.5194/bg-9-5181-2012 CrossRefGoogle Scholar
  187. Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174. doi: 10.1890/0012-9615(2006)076%5B0151:ATMOLD%5D2.0.CO;2 CrossRefGoogle Scholar
  188. Moorhead D, Lashermes G, Recous S, Bertrand I (2014) Interacting microbe and litter quality controls on litter decomposition: a modeling analysis. PLoS One. doi: 10.1371/journal.pone.0108769 Google Scholar
  189. Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol. doi: 10.3389/fmicb.2014.00022 PubMedPubMedCentralGoogle Scholar
  190. Mora P, Miambi E, Jimenez JJ, Decaens T, Rouland C (2005) Functional complement of biogenic structures produced by earthworms, termites and ants in the neotropical savannas. Soil Biol Biochem 37:1043–1048. doi: 10.1016/j.soilbio.2004.10.019 CrossRefGoogle Scholar
  191. Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8:14349. doi: 10.1038/ncomms14349 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Nagy LG, Riley R, Bergmann PJ, Krizsán K, Martin FM, Grigoriev IV, Cullen D, Hibbett DS (2016) Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene-phenotype evolution. Mol Biol Evol. doi: 10.1093/molbev/msw238 Google Scholar
  193. Nannipieri P, Ascher MT, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. doi: 10.1111/ejss.4_12398 CrossRefGoogle Scholar
  194. Noirot-Cosson PE, Vaudour E, Gilliot J-M, Gabrielle B, Houot S (2016) Modelling the long-term effect of urban waste compost applications on carbon and nitrogen dynamics in temperate cropland. Soil Biol Biochem 94:138–153. doi: 10.1016/j.soilbio.2015.11.014 CrossRefGoogle Scholar
  195. O’Rourke SM, Angers DA, Holden NM, McBratney AB (2015) Soil organic carbon across scales. Glob Chang Biol 21:3561–3574. doi: 10.1111/gcb.12959 PubMedCrossRefGoogle Scholar
  196. Osono T, Takeda H (2006) Fungal decomposition of abies needle and Betula leaf litter. Mycologia 98:172–179. doi: 10.3852/mycologia.98.2.172 PubMedCrossRefGoogle Scholar
  197. Pajor R, Falconer R, Hapca S, Otten W (2010) Modelling and quantifying the effect of heterogeneity in soil physical conditions on fungal growth. Biogeosciences 7:3731–3740. doi: 10.5194/bg-7-3731-2010 CrossRefGoogle Scholar
  198. Panettieri M, Rumpel C, Dignac M-F, Chabbi A (2017) Does grassland introduction into cropping cycles affect carbon dynamics through changes of allocation of soil organic matter within aggregate fractions? Sci Total Environ 576:251–263. doi: 10.1016/j.scitotenv.2016.10.073 PubMedCrossRefGoogle Scholar
  199. Paradelo R, Virto I, Chenu C (2015) Net effect of liming on soil organic carbon stocks: a review. Agric Ecosyst Environ 202:98–107. doi: 10.1016/j.agee.2015.01.005 CrossRefGoogle Scholar
  200. Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49–57. doi: 10.1038/nature17174 PubMedCrossRefGoogle Scholar
  201. Pellerin S, Bamière L, Angers D, Béline F, Benoît M, Butault JP, Chenu C, Colnenne-David C, De Cara S, Delame N, Doreau M, Dupraz P, Faverdin P, Garcia-Launay F, Hassouna M, Hénault C, Jeuffroy MH, Klumpp K, Metay A, Moran D, Recous S, Samson E, Savini I, Pardon L (2013) Quelle contribution de l’agriculture française à la réduction des émissions de gaz à effet de serre? Potentiel d’atténuation et coût de dix actions techniques. Synthèse du rapport d’étude, INRA (France), 92 pGoogle Scholar
  202. Peltre C, Christensen BT, Dragon S, Icard C, Kätterer T, Houot S (2012) RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biol Biochem 52:49–60. doi: 10.1016/j.soilbio.2012.03.023 CrossRefGoogle Scholar
  203. Perveen N, Barot S, Alvarez G, Klumpp K, Martin R, Rapaport A, Herfurth D, Louault F, Fontaine S (2014) Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Glob Chang Biol 20:1174–1190. doi: 10.1111/gcb.12493 PubMedCrossRefGoogle Scholar
  204. Pinheiro M, Garnier P, Beguet J, Martin-Laurent F, Vieublé-Gonod L (2015) The millimetre-scale distribution of 2,4-D and its degraders drives the fate of 2,4-D at the soil core scale. Soil Biol Biochem 88:90–100. doi: 10.1016/j.soilbio.2015.05.008 CrossRefGoogle Scholar
  205. Plante AF, McGill WB (2002) Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil Tillage Res 66:79–92. doi: 10.1016/S0167-1987(02)00015-6 CrossRefGoogle Scholar
  206. Plante AF, Fernández JM, Haddix ML, Steinweg JM, Conant RT (2011) Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43:1051–1058. doi: 10.1016/j.soilbio.2011.01.024 CrossRefGoogle Scholar
  207. Poirier V, Angers DA, Whalen JK (2014) Formation of millimetric-scale aggregates and associated retention of 13C-15N-labelled residues are greater in subsoil than topsoil. Soil Biol Biochem 75:45–53. doi: 10.1016/j.soilbio.2014.03.020 CrossRefGoogle Scholar
  208. Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo Y, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L (2015) How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol 206:1188–1190. doi: 10.1111/nph.13571 PubMedCrossRefGoogle Scholar
  209. Pöplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael BAS, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach. Glob Chang Biol 17:2415–2427. doi: 10.1111/j.1365-2486.2011.02408.x CrossRefGoogle Scholar
  210. Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733. doi: 10.1111/1365-2745.12537 CrossRefGoogle Scholar
  211. Qian Y, Follett RF (2002) Assessing soil carbon sequestration in turfgrass systems using long-term soil testing data. Agron J 94:930–935CrossRefGoogle Scholar
  212. Ransom B, Kim D, Kastner M, Wainwright S (1998) Organic matter preservation on continental slopes: importance of mineralogy and surface area. Geochimica and Cosmochimica Acta 62:1329–1345. doi: 10.1016/S0016-7037(98)00050-7 CrossRefGoogle Scholar
  213. Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi: 10.1007/s11104-004-0907-y CrossRefGoogle Scholar
  214. Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One. doi: 10.1371/journal.pone.0087217 Google Scholar
  215. Remusat L, Hatton PJ, Nico PS, Zeller B, Kleber M, Derrien D (2012) NanoSIMS study of organic matter associated with soil aggregates: advantages, limitations, and combination with STXM. Environ Sci Technol 46:3943–3949. doi: 10.1021/es203745k PubMedCrossRefGoogle Scholar
  216. Rémy JC, Marin-Laflèche A (1974) L’analyse de terre: Réalisation d’un programme d’interprétation automatique. Annales Agronomiques 25:607–632Google Scholar
  217. Resat H, Bailey V, McCue LA, Konopka A (2012) Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources. Microb Ecol 63:883–897. doi: 10.1007/s00248-011-9965-x PubMedCrossRefGoogle Scholar
  218. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388. doi: 10.1111/nph.13045 PubMedCrossRefGoogle Scholar
  219. Roussel O, Bourmeau E, Walter C (2001) Evaluation du déficit en matière organique des sols français et des besoins potentiels en amendements organiques. Etude et Gestion des Sols 8:65–81Google Scholar
  220. Rovira AD, Greacen EL (1957) The effect of aggregate disruption on the activity of microorganisms in soil. Aust J Agric Res 8:659–673CrossRefGoogle Scholar
  221. Ruamps LS, Nunan N, Chenu C (2011) Microbial biogeography at the soil pore scale. Soil Biol Biochem 43:280–286. doi: 10.1016/j.soilbio.2010.10.010 CrossRefGoogle Scholar
  222. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi: 10.1007/s11104-010-0391-5 CrossRefGoogle Scholar
  223. Rumpel C, Chabbi A, Nunan N, Dignac M-F (2009) Impact of landuse change on the molecular composition of soil organic matter. J Anal Appl Pyrolysis 85:431–434. doi: 10.1016/j.jaap.2008.10.011 CrossRefGoogle Scholar
  224. Rumpel C, Baumann K, Remusat L, Dignac M-F, Barré P, Deldicque D, Glasser G, Lieberwirth I, Chabbi A (2015) Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biol Biochem 85:82–88. doi: 10.1016/j.soilbio.2015.02.017 CrossRefGoogle Scholar
  225. Saenger A, Cécillon L, Sebag D, Brun JJ (2013) Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: a rock-Eval pyrolysis survey. Org Geochem 54:101–114. doi: 10.1016/j.orggeochem.2012.10.008 CrossRefGoogle Scholar
  226. Saenger A, Cécillon L, Poulenard P, Bureau F, De Danieli S, Gonzalez JM, Brun JJ (2015) Surveying the carbon pools of mountain soils: a comparison of physical fractionation and rock-Eval pyrolysis. Geoderma 241:279–288. doi: 10.1016/j.geoderma.2014.12.001 CrossRefGoogle Scholar
  227. Saffih-Hdadi K, Mary B (2008) Modeling consequences of straw residues export on soil organic carbon. Soil Biol Biochem 40:594–607. doi: 10.1016/j.soilbio.2007.08.022 CrossRefGoogle Scholar
  228. Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856. doi: 10.1078/0031-4056-00270 Google Scholar
  229. Schimel J (2013) Soil carbon: microbes and global carbon. Nat Clim Chang 3:867–868. doi: 10.1038/nclimate2015 CrossRefGoogle Scholar
  230. Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol. doi: 10.3389/fmicb.2012.00348 PubMedPubMedCentralGoogle Scholar
  231. Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563. doi: 10.1016/S0038-0717(03)00015-4 CrossRefGoogle Scholar
  232. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberg G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning M, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi: 10.1038/nature10386 PubMedCrossRefGoogle Scholar
  233. Shan J, Brune A, Ji R (2010) Selective digestion of the proteinaceous component of humic substances by the geophagous earthworms Metaphire guillelmi and Amynthas corrugatus. Soil Biol Biochem 42:1455–1462. doi: 10.1016/j.soilbio.2010.05.008 CrossRefGoogle Scholar
  234. Simpson AJ, Simpson MJ, Smith E, Kelleher BBP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076. doi: 10.1021/es071217x PubMedCrossRefGoogle Scholar
  235. Sistla SA, Rastetter EB, Schimel JP (2014) Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe-plant-soil model. Ecol Monogr 84:151–170. doi: 10.1890/12-2119.1 CrossRefGoogle Scholar
  236. Six J, Jastrow JD (2002) Organic matter turnover. Encyclopedia of Soil Science, pp:936–942Google Scholar
  237. Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377. doi: 10.2136/sssaj1998.03615995006200050032x CrossRefGoogle Scholar
  238. Six J, Elliott ET, Paustian K (2000) Soil macroaggregates turnover and microaggregates formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. doi: 10.1016/S0038-0717(00)00179-6 CrossRefGoogle Scholar
  239. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31. doi: 10.1016/j.still.2004.03.008 CrossRefGoogle Scholar
  240. Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156. doi: 10.1016/j.envint.2008.06.009 PubMedCrossRefGoogle Scholar
  241. Soudzilovskaia NA, Douma JC, Akhmetzhanova AA, van Bodegom PM, Cornwell WK, Moens EJ, Treseder KK, Tibbett M, Wang YP, Cornelissen JHC (2015) Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob Ecol Biogeogr 24:371–382. doi: 10.1111/geb.12272 CrossRefGoogle Scholar
  242. Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–350. doi: 10.1017/S1751731109990784 PubMedCrossRefGoogle Scholar
  243. Stamati FE, Nikolaidis NP, Banwart S, Blum WEH (2013) A coupled carbon, aggregation, and structure turnover (CAST) model for topsoils. Geoderma 211-212:51–64. doi: 10.1016/j.geoderma.2013.06.014 CrossRefGoogle Scholar
  244. Steiner C, Blum WEH, Zech W, de Macedo JLV, Teixeira WG, Lehmann J, Nehls T (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291:275–290. doi: 10.1007/s11104-007-9193-9 CrossRefGoogle Scholar
  245. Stokes A, Atger C, Bengough A, Fourcaud T, Sidle R (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30. doi: 10.1007/s11104-009-0159-y CrossRefGoogle Scholar
  246. Strohbach MW, Arnold E, Haase D (2012) The carbon footprint of urban green space—a life cycle approach. Landsc Urban Plan 104:220–229. doi: 10.1016/j.landurbplan.2011.10.013 CrossRefGoogle Scholar
  247. Tardy V, Spor A, Mathieu O, Leveque J, Terrat S, Plassart P, Regnier T, Bardgett RD, van der Putten WH, Roggero PP, Seddaiu G, Bagella S, Lemanceau P, Ranjard L, Maron PA (2015) Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol Biochem 90:204–213. doi: 10.1016/j.soilbio.2015.08.010 CrossRefGoogle Scholar
  248. Thaer A (1811) Principes raisonnés d’agriculture. Traduit de l’allemand par EVB Crud, JJ Prechoud Ed. Paris, 4 t., pp 1811–1816Google Scholar
  249. Theng BKG (2012) Formation and properties of clay-polymer complexes. Book series: Developments in Clay Science, vol. 4Google Scholar
  250. Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soil: a review. Soil Biol Biochem 42:1200–1211. doi: 10.1016/j.soilbio.2010.03.017 CrossRefGoogle Scholar
  251. Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soil. Soil Sci 23:821–825Google Scholar
  252. Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013) Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10:1717–1736. doi: 10.5194/bg-10-1717-2013
  253. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173. doi: 10.1038/38260 CrossRefGoogle Scholar
  254. Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of organic matter in soil. In: Biophysico-chemical processes involving natural nonliving organic matter in environmental systems (Senesi N, Xing B, Huang PM, eds), Chap 6, pp 219–272, John Wiley & Sons, Inc. doi: 10.1002/9780470494950.ch6
  255. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245. doi: 10.1016/S1369-5274(02)00324-7 PubMedCrossRefGoogle Scholar
  256. Vidal A, Quenea K, Alexis M, Derenne S (2016) Molecular fate of root and shoot litter on incorporation and decomposition in earthworm casts. Org Geochem 101:1–10. doi: 10.1016/j.orggeochem.2016.08.003 CrossRefGoogle Scholar
  257. Vieublé Gonod L, Chenu C, Soulas G (2003) Spatial variability of 2,4-dichlorophenoxy acetic acid (2,4-D) mineralisation potential at a millimetre scale in soil. Soil Biol Biochem 35:373–382. doi: 10.1016/S0038-0717(02)00287-0 CrossRefGoogle Scholar
  258. Virto I, Barre P, Burlot A, Chenu C (2012) Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108:17–26. doi: 10.1007/s10533-011-9600-4 CrossRefGoogle Scholar
  259. Vogel C, Mueller CW, Höschen C, Buegger F, Heister K, Schulz S, Schloter M, Kögel-Knabner I (2014) Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat Commun. doi: 10.1038/ncomms3947 Google Scholar
  260. Vogel L, Makowski D, Garnier P, Vieublé-Gonod L, Raynaud X, Nunan N, Coquet Y, Chenu C, Falconer R, Pot V (2015) Modeling the effect of soil meso- and macropores topology on the biodegradation of a soluble carbon substrate. Adv Water Resour 84:87–102. doi: 10.1016/j.advwatres.2015.05.020 CrossRefGoogle Scholar
  261. von Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberg G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124. doi: 10.1002/jpln.200700047
  262. Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, Norby RJ (2015) Predicting long-term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Glob Biogeochem Cycles 5:1–20. doi: 10.1002/2014GB004995 Google Scholar
  263. Wei X, Shao M, Gale W, Li L (2014) Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports. doi: 10.1038/srep04062 Google Scholar
  264. Wen Y, Li H, Xiao J, Wang C, Shen Q, Ran W, He X, Zhou Q, Yu G (2014) Insights into complexation of dissolved organic matter and Al(III) and nanominerals formation in soils under contrasting fertilizations using two-dimensional correlation spectroscopy and high resolution-transmission electron microscopy techniques. Chemosphere 111:441–449. doi: 10.1016/j.chemosphere.2014.03.078 PubMedCrossRefGoogle Scholar
  265. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Le Roux X (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169. doi: 10.1111/j.1462-2920.2006.01098.x PubMedCrossRefGoogle Scholar
  266. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219. doi: 10.1111/j.1462-2920.2007.01335.x PubMedCrossRefGoogle Scholar
  267. West LT, Hendrix PF, Bruce RR (1991) Micromorphic observation of soil alteration by earthworms. Agric Ecosyst Environ 34:363–370. doi: 10.1016/0167-8809(91)90121-D CrossRefGoogle Scholar
  268. Wieder W, Allison SD, Davidson E, Georgiou K, Hararuk O, He YJ, Hopkins F, Luo YQ, Smith MJ, Sulman B, Todd-Brown K, Wang YP, Xia JY, Xu XF (2015) Explicitly representing soil microbial processes in earth system models. Glob Biogeochem Cycles 29:1782–1800. doi: 10.1002/2015GB005188 CrossRefGoogle Scholar
  269. Winding A, Ronn R, Hendriksen NB (1997) Bacteria and protozoa in soil microhabitats as affected by earthworms. Biol Fertil Soils 24:133–140. doi: 10.1007/s003740050221 CrossRefGoogle Scholar
  270. Wu Q-S, Cao M-Q, Zou Y-N, He X-H (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports. doi: 10.1038/srep05823 Google Scholar
  271. Wutzler T, Reichstein M (2008) Colimitation of decomposition by substrate and decomposers - a comparison of model formulations. Biogeosciences 5:749–759. doi: 10.5194/bg-5-749-2008 CrossRefGoogle Scholar
  272. Yue K, Peng Y, Peng C, Yang W, Peng X, Wu F (2016) Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports. doi: 10.1038/srep19895 Google Scholar
  273. Zhou X, Zhou L, Nie Y, Fu Y, Du Z, Shao J, Zheng Z, Wang X (2016) Similar responses of soil carbon storage to drought and irrigation interrestrial ecosystems but with contrasting mechanisms: a meta-analysis. Agric Ecosyst Environ 228:70–81. doi: 10.1016/j.agee.2016.04.030 CrossRefGoogle Scholar
  274. Zimmerman AR, Chorover J, Goyne KW, Brantley SL (2004) Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ Sci Technol 38:4542–4548. doi: 10.1021/es035340+ PubMedCrossRefGoogle Scholar
  275. Zimmermann M, Leifeld J, Schmidt MWI, Smith P, Fuhrer J (2007) Measured soil organic matter fractions can be related to pools in the RothC model. Eur J Soil Sci 58:658–667. doi: 10.1111/j.1365-2389.2006.00855.x CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Marie-France Dignac
    • 1
  • Delphine Derrien
    • 2
  • Pierre Barré
    • 3
  • Sébastien Barot
    • 4
  • Lauric Cécillon
    • 5
  • Claire Chenu
    • 1
  • Tiphaine Chevallier
    • 6
  • Grégoire T Freschet
    • 7
  • Patricia Garnier
    • 1
  • Bertrand Guenet
    • 8
  • Mickaël Hedde
    • 1
  • Katja Klumpp
    • 9
  • Gwenaëlle Lashermes
    • 10
  • Pierre-Alain Maron
    • 11
  • Naoise Nunan
    • 4
  • Catherine Roumet
    • 7
  • Isabelle Basile-Doelsch
    • 12
  1. 1.UMR ECOSYS, INRA, AgroParisTechUniversité Paris-SaclayThiverval-GrignonFrance
  2. 2.Biogéochimie des Ecosystèmes Forestiers, INRAChampenouxFrance
  3. 3.Laboratoire de Géologie de l’ENS, PSL Research University, UMR 8538 of CNRSParisFrance
  4. 4.UMR iEES-Paris (CNRS, UPMC, INRA, IRD)ParisFrance
  5. 5.Université Grenoble Alpes, Irstea, UR EMGRSt-Martin-d’HèresFrance
  6. 6.Eco&Sols (IRD, Montpellier SupAgro, Cirad, INRA)MontpellierFrance
  7. 7.Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE)MontpellierFrance
  8. 8.Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL, CEA, CNRS, UVSQ, Université Paris-Saclay)Gif-sur-YvetteFrance
  9. 9.INRA, UREPClermont-FerrandFrance
  10. 10.UMR FARE (INRA, URCA)ReimsFrance
  11. 11.Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-ComtéDijonFrance
  12. 12.Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGEAix-en-ProvenceFrance

Personalised recommendations