Integrated management of damping-off diseases. A review

  • Jay Ram Lamichhane
  • Carolyne Dürr
  • André A. Schwanck
  • Marie-Hélène Robin
  • Jean-Pierre Sarthou
  • Vincent Cellier
  • Antoine Messéan
  • Jean-Noël Aubertot
Review Article
Part of the following topical collections:
  1. Pest control

Abstract

Damping-off is a disease that leads to the decay of germinating seeds and young seedlings, which represents for farmers one of the most important yield constraints both in nurseries and fields. As for other biotic stresses, conventional fungicides are widely used to manage this disease, with two major consequences. On the one hand, fungicide overuse threatens the human health and causes ecological concerns. On the other hand, this practice has led to the emergence of pesticide-resistant microorganisms in the environment. Thus, there are increasing concerns to develop sustainable and durable damping-off management strategies that are less reliant on conventional pesticides. Achieving such a goal requires a better knowledge of pathogen biology and disease epidemiology in order to facilitate the decision-making process. It also demands using all available non-chemical tools that can be adapted to regional and specific production situations. However, this still is not the case and major knowledge gaps must be filled. Here, we review up to 300 articles of the damping-off literature in order to highlight major knowledge gaps and identify future research priorities. The major findings are (i) damping-off is an emerging disease worldwide, which affects all agricultural and forestry crops, both in nurseries and fields; (ii) over a dozen of soil-borne fungi and fungus-like organisms are a cause of damping-off but only a few of them are frequently associated with the disease; (iii) damping-off may affect from 5 to 80% of the seedlings, thereby inducing heavy economic consequences for farmers; (iv) a lot of research efforts have been made in recent years to develop biocontrol solutions for damping-off and there are interesting future perspectives; and (v) damping-off management requires an integrated pest management (IPM) approach combining both preventive and curative tactics and strategies. Given the complex nature of damping-off and the numerous factors involved in its occurrence, we recommend further research on critical niches of complexity, such as seeds, seedbed, associated microbes and their interfaces, using novel and robust experimental and modeling approaches based on five research priorities described in this paper.

Keywords

Abiotic stresses Best management practices Economic losses Integrated pest management Interactions Seed germination Seedling decay Soil-borne pathogens 

Notes

Acknowledgements

We are grateful to Prof. Lindsey J. du Toit, Washington State University, USA, and Dr. Martin Chilvers, Michigan State University, USA, for providing high-quality photos of damping-off disease symptoms. We also thank the participants of the Rés0Pest IPM network (DEPHY EXPE ECOPHYTO), coordinated by the INRA/CIRAD, who provided the data shown in Fig. 6, and in particular Guillaume Audebert, Alain Berthier, Caroline Colnenne, Sébastien Darras, Violaine Deytieux, André Gavaland, Philippe Le Roy, and Antoine Savoie.

References

  1. Abbasi PA, Lazarovits G (2005) Effects of AG3 phosphonate formulations on incidence and severity of Pythium damping-off of cucumber seedlings under growth room, microplot, and field conditions. Can J Plant Pathol 27:420–429. doi: 10.1080/07060660509507241 CrossRefGoogle Scholar
  2. Abbasi PA, Lazarovits G (2006) Seed treatment with phosphonate (AG3) suppresses Pythium damping-off of cucumber seedlings. Plant Dis 90:459–464. doi: 10.1094/PD-90-0459 CrossRefGoogle Scholar
  3. Abdel-Monaim MF, Abo-Elyousr KAM (2012) Effect of preceding and intercropping crops on suppression of lentil damping-off and root rot disease in New Valley – Egypt. Crop Prot 32:41–46. doi: 10.1016/j.cropro.2011.10.011 CrossRefGoogle Scholar
  4. Abdelzaher HMA (2004) Occurrence of damping-off of wheat caused by Pythium diclinum tokunaga in El-Minia, Egypt and its possible control by Gliocladium roseum and Trichoderma harzianum. Arch Phytopathol Plant Prot 37:147–159. doi: 10.1080/0323540042000205893 CrossRefGoogle Scholar
  5. Adandonon A, Aveling TAS, Tamo M (2004) Occurrence and distribution of cowpea damping-off and stem rot and associated fungi in Benin. J Agric Sci 142:561–566. doi: 10.1017/S0021859604004629 CrossRefGoogle Scholar
  6. Agrios GN (2005) Plant pathology. Academic Press, New York, N.YGoogle Scholar
  7. Agustí-Brisach C, Pérez-Sierra A, García-Figueres F et al (2011) First report of damping-off caused by Cylindrocarpon pauciseptatum on Pinus radiata in Spain. Plant Dis 95:874. doi: 10.1094/PDIS-02-11-0125 CrossRefGoogle Scholar
  8. Aiello D, Castello I, Vitale A et al (2008a) First report of damping-off on African daisy caused by Rhizoctonia solani AG-4 in Italy. Plant Dis 92:1367. doi: 10.1094/PDIS-92-9-1367B CrossRefGoogle Scholar
  9. Aiello D, Parlavecchio G, Vitale A et al (2008b) First report of damping-off caused by Rhizoctonia solani AG-4 on Lagunaria patersonii in Italy. Plant Dis 92:836. doi: 10.1094/PDIS-92-5-0836A CrossRefGoogle Scholar
  10. Alcala AVC, Paulitz TC, Schroeder KL et al (2016) Pythium species associated with damping-off of pea in certified organic fields in the Columbia basin of Central Washington. Plant Dis 100:916–925. doi: 10.1094/PDIS-07-15-0774-RE CrossRefGoogle Scholar
  11. Al-Hammouri A, Lindemann W, Sanogo S et al (2013) Interaction between Rhizoctonia solani and Meloidogyne incognita on Chile pepper in soil infested simultaneously with both plant pathogens. Can J Plant Sci 93:67–69. doi: 10.4141/cjps2012-037 CrossRefGoogle Scholar
  12. Al-Hazmi AS, Al-Nadary SN (2015) Interaction between Meloidogyne incognita and Rhizoctonia solani on green beans. Saudi J Biol Sci 22:570–574. doi: 10.1016/j.sjbs.2015.04.008 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Allain-Boulé N, Lévesque CA, Martinez C et al (2004) Identification of Pythium species associated with cavity-spot lesions on carrots in eastern Quebec. Can J Plant Pathol 26:365–370. doi: 10.1080/07060660409507154 CrossRefGoogle Scholar
  14. Allmaras RR, Kraft JM, Miller DE (1988) Effects of soil compaction and incorporated crop residue on root health. Annu Rev Phytopathol 26:219–243CrossRefGoogle Scholar
  15. Almaliky BSA, Abidin MAZ, Kader J, Wong MY (2012) First report of Marasmiellus palmivorus causing post-emergence damping off on coconut seedlings in Malaysia. Plant Dis 97:143. doi: 10.1094/PDIS-07-12-0627-PDN CrossRefGoogle Scholar
  16. Al-Sa’di AM, Drenth A, Deadman ML et al (2007) Molecular characterization and pathogenicity of Pythium species associated with damping-off in greenhouse cucumber (Cucumis sativus) in Oman. Plant Pathol 56:140–149. doi: 10.1111/j.1365-3059.2006.01501.x Google Scholar
  17. Al-Sadi AM, Al-Masoudi RS, Al-Habsi N et al (2010) Effect of salinity on pythium damping-off of cucumber and on the tolerance of Pythium aphanidermatum. Plant Pathol 59:112–120. doi: 10.1111/j.1365-3059.2009.02176.x CrossRefGoogle Scholar
  18. Aubertot J-N, Robin M-H (2013) Injury profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases. PLoS One 8(9):e73202. doi: 10.1371/journal.pone.0073202 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Aubertot J-N, Dürr C, Richard G et al (2002) Are penetrometer measurements useful in predicting emergence of sugar beet (Beta vulgaris L.) seedlings through a crust? Plant Soil 241:177–186. doi: 10.1023/A:1016170329919 CrossRefGoogle Scholar
  20. Axelrood PE, Neumann M, Trotter D et al (1995) Seedborne Fusarium on Douglas-fir: pathogenicity and seed stratification method to decrease Fusarium contamination. New For 9:35–51. doi: 10.1007/BF00028924 CrossRefGoogle Scholar
  21. Babadoost M, Islam SZ (2003) Fungicide seed treatment effects on seedling damping-off of pumpkin caused by Phytophthora capsici. Plant Dis 87:63–68. doi: 10.1094/PDIS.2003.87.1.63 CrossRefGoogle Scholar
  22. Babai-Ahary A, Abrinnia M, Heravan IM (2004) Identification and pathogenicity of Pythium species causing damping-off in sugarbeet in Northwest Iran. Australas Plant Pathol 33:343–347. doi: 10.1071/AP04038 CrossRefGoogle Scholar
  23. Bacharis C, Gouziotis A, Kalogeropoulou P et al (2010) Characterization of Rhizoctonia spp. isolates associated with damping-off disease in cotton and tobacco seedlings in Greece. Plant Dis 94:1314–1322. doi: 10.1094/PDIS-12-09-0847 CrossRefGoogle Scholar
  24. Back MA, Jenkinson P, Haydock PPJ (2000) The interaction between potato cyst nematodes and Rhizoctonia solani diseases in potatoes. Proc. Bright. Crop Prot. Conf. Pests Dis. British Crop Protection Council, Farnham, UK, pp 503–506Google Scholar
  25. Bahramisharif A, Lamprecht SC, Calitz F, McLeod A (2013a) Suppression of pythium and Phytophthora damping-off of rooibos by compost and a combination of compost and nonpathogenic Pythium taxa. Plant Dis 97:1605–1610. doi: 10.1094/PDIS-04-13-0360-RE CrossRefGoogle Scholar
  26. Bahramisharif A, Lamprecht SC, Spies CFJ et al (2013b) Pythium spp. associated with rooibos seedlings, and their pathogenicity toward rooibos, lupin, and oat. Plant Dis 98:223–232. doi: 10.1094/PDIS-05-13-0467-RE CrossRefGoogle Scholar
  27. Bai Q, Xie Y, Wang X et al (2011) First report of damping-off of Rhodiola sachalinensis caused by Rhizoctonia solani AG-4 HG-II in China. Plant Dis 96:142. doi: 10.1094/PDIS-07-11-0559 CrossRefGoogle Scholar
  28. Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180. doi: 10.1016/S0167-1987(03)00086-2 CrossRefGoogle Scholar
  29. Baker R (1971) Analyses involving inoculum density of soil-borne plant pathogens in epidemiology. Phytopathology 61:1280–1292CrossRefGoogle Scholar
  30. Bandyopadhyay R, Mwangi M, Aigbe SO, Leslie JF (2006) Fusarium species from the cassava root rot complex in West Africa. Phytopathology 96:673–676. doi: 10.1094/PHYTO-96-0673 PubMedCrossRefGoogle Scholar
  31. Bardin SD, Huang HC, Liu L, Yanke LJ (2003) Control, by microbial seed treatment, of dampingoff caused by Pythium sp. on canola, safflower, dry pea, and sugar beet. Can J Plant Pathol 25:268–275. doi: 10.1080/07060660309507079 CrossRefGoogle Scholar
  32. Bardin SD, Huang HC, Moyer JR (2004a) Control of pythium damping-off of sugar beet by seed treatment with crop straw powders and a biocontrol agent. Biol Control 29:453–460. doi: 10.1016/j.biocontrol.2003.09.001 CrossRefGoogle Scholar
  33. Bardin SD, Huang HC, Pinto J et al (2004b) Biological control of pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82:291–296CrossRefGoogle Scholar
  34. Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298. doi: 10.1006/pmpp.2003.0443 CrossRefGoogle Scholar
  35. Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350. doi: 10.1016/j.biocontrol.2003.11.005 CrossRefGoogle Scholar
  36. Barros GG, Zanon MSA, Chiotta ML et al (2014) Pathogenicity of phylogenetic species in the Fusarium graminearum complex on soybean seedlings in Argentina. Eur J Plant Pathol 138:215–222. doi: 10.1007/s10658-013-0332-2 CrossRefGoogle Scholar
  37. Beech WS (1949) The effects of excess solutes, temperature and moisture upon damping-off. Pennsylvania Agric Exp Stn Bull 509:29Google Scholar
  38. Belvins RL, Cook D, Phillips SH, Phillips RE (1971) Influence of no-tillage on soil moisture. Agron J 63:593–596CrossRefGoogle Scholar
  39. Benhamou N (2004) Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: a comparison with the effect of chitosan. Phytopathology 94:693–705. doi: 10.1094/PHYTO.2004.94.7.693 PubMedCrossRefGoogle Scholar
  40. Benhamou N, Chet I (1997) Cellular and molecular mechanisms involved in the interaction between Trichoderma harzianum and Pythium ultimum. Appl Environ Microbiol 63:2095–2099PubMedPubMedCentralGoogle Scholar
  41. Ben-Yephet Y, Nelson EB (1999) Differential suppression of damping-off caused by Pythium aphanidermatum, P. irregulare, and P. myriotylum in composts at different temperatures. Plant Dis 83:356–360. doi: 10.1094/PDIS.1999.83.4.356 CrossRefGoogle Scholar
  42. Bertrand B, Nunez C, Sarah JL (2000) Disease complex in coffee involving Meloidogyne arabicida and Fusarium oxysporum. Plant Pathol 49:383–388. doi: 10.1046/j.1365-3059 CrossRefGoogle Scholar
  43. Bik HM, Porazinska DL, Creer S et al (2016) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27:233–243. doi: 10.1016/j.tree.2011.11.010 CrossRefGoogle Scholar
  44. Björsell P (2015) Interactions between some plantparasitic nematodes and Rhizoctonia solani in potato fields. The Swedish University of Agricultural SciencesGoogle Scholar
  45. Bockus WW, Shroyer JP (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Phytopathol 36:485–500. doi: 10.1146/annurev.phyto.36.1.485 PubMedCrossRefGoogle Scholar
  46. Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324Google Scholar
  47. Bourguet D, Guillemaud T (2016) The hidden and external costs of pesticide use. In: Lichtfouse E (ed) Sustain. Agric. Rev, Vol, vol 19. Springer International Publishing, Cham, pp 35–120. doi: 10.1007/978-3-319-26777-7_2 CrossRefGoogle Scholar
  48. Boyce JS (1961) Forest pathology, third. McGrawHill, USA, New YorkGoogle Scholar
  49. Bradley CA (2007) Effect of fungicide seed treatments on stand establishment, seedling disease, and yield of soybean in North Dakota. Plant Dis 92:120–125. doi: 10.1094/PDIS-92-1-0120 CrossRefGoogle Scholar
  50. Brunel-Muguet S, Aubertot J-N, Durr C (2011) Simulating the impact of genetic diversity of Medicago truncatula on germination and emergence using a crop emergence model for ideotype breeding. Ann Bot. doi: 10.1093/aob/mcr071 PubMedPubMedCentralGoogle Scholar
  51. Bull CT, Shetty KG, Subbarao KV (2002) Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86:889–896. doi: 10.1094/PDIS.2002.86.8.889 CrossRefGoogle Scholar
  52. Bulletin de Santé Vegetal (BSV) (2016) Résultats de l’enquête dégâts de mouche (géomyze) sur maïs en Bretagne. Technical report, p. 9 (In French)Google Scholar
  53. Burdon JJ, Chilvers GA (1975) Epidemiology of damping-off disease (Pythium irregulare) in relation to density of Lepidium sativum seedlings. Ann Appl Biol 81:135–143. doi: 10.1111/j.1744-7348.1975.tb00530.x CrossRefGoogle Scholar
  54. Burke DW, Holmes LD, Barker AW (1972a) Distribution of Fusarium solani f. Sp. phaseoli and bean roots in relation to tillage and soil compaction. Phytopathology 62:550–554CrossRefGoogle Scholar
  55. Burke DW, Miller DE, Holmes LD, Barker AW (1972b) Counteracting bean root rot by loosening the soil. Phytopathology 62:306–309CrossRefGoogle Scholar
  56. Burns JR, Benson DM (2000) Biocontrol of damping-off of Catharanthus roseus caused by Pythium ultimum with Trichoderma virens and Binucleate Rhizoctonia fungi. Plant Dis 84:644–648. doi: 10.1094/PDIS.2000.84.6.644 CrossRefGoogle Scholar
  57. Carisse O, Bernier J, Benhamou N (2003) Selection of biological agents from composts for control of damping-off of cucumber caused by Pythium ultimum. Can J Plant Pathol 25:258–267. doi: 10.1080/07060660309507078 CrossRefGoogle Scholar
  58. Carling DE, Summer DR (1992) Rhizoctonia. In: Singleton L, Mihail JD, Rush CM (eds) Methods res. Soilborne Phytopathogenic fungi. American Phytopathological Society, St Paul, MN, the USA, pp 157–165Google Scholar
  59. Carling DE, Baird RE, Gitaitis RD et al (2002) Characterization of AG-13, a newly reported anastomosis Group of Rhizoctonia solani. Phytopathology 92:893–899. doi: 10.1094/PHYTO.2002.92.8.893 PubMedCrossRefGoogle Scholar
  60. Chandanie WA, Kubota M, Hyakumachi M (2009) Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.) Appl Soil Ecol 41:336–341. doi: 10.1016/j.apsoil.2008.12.006 CrossRefGoogle Scholar
  61. Chen CQ, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23. doi: 10.1006/pmpp.1999.0243 CrossRefGoogle Scholar
  62. Coffua LS, Veterano ST, Clipman SJ et al (2016) Characterization of Pythium spp. associated with asymptomatic soybean in southeastern Pennsylvania. Plant Dis. doi: 10.1094/PDIS-11-15-1355-RE Google Scholar
  63. Coles RB, Wicks TJ (2003) The incidence of Alternaria radicina on carrot seeds, seedlings and roots in South Australia. Australas Plant Pathol 32:99–104. doi: 10.1071/AP02069 CrossRefGoogle Scholar
  64. Constantin J, Dürr C, Tribouillois H, Justes E (2015) Catch crop emergence success depends on weather and soil seedbed conditions in interaction with sowing date: a simulation study using the SIMPLE emergence model. F Crop Res 176:22–33. doi: 10.1016/j.fcr.2015.02.017 CrossRefGoogle Scholar
  65. Cook RJ (2001) Management of wheat and barley root diseases in modern farming systems. Australas Plant Pathol 30:119–126. doi: 10.1071/AP01010 CrossRefGoogle Scholar
  66. Cook JR, Haglund WA (1991) Wheat yield depression associated with conservation tillage caused by root rot pathogens not phytotoxins from the straw. Soil Biol Biochem 23:1125–1132CrossRefGoogle Scholar
  67. Cook RJ, Ownley BH, Zhang H, Vakoch D (2000) Influence of paired-row spacing and fertilizer placement on yield and root diseases of direct-seeded wheat. Crop Sci 40:1079–1087CrossRefGoogle Scholar
  68. Cram MM (2003) Damping-Off. Tree Plant Notes 50:1–5Google Scholar
  69. Crous PW (2002) Damping-off. In: Crous PW (ed) Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. The American Phytopathological Society, St. Paul, MN, pp 15–17Google Scholar
  70. Davey CB (1996) Nursery soil management-organic amendments. In: Landis TD, South DB (eds) Natl. Proceedings, For. Conserv. Nurs. Assoc. Portland (OR), p 6–18Google Scholar
  71. de los Santos-Villalobos S, Guzmán-Ortiz DA, Gómez-Lim MA et al (2013) Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) {T8a} as a biological control agent against anthracnose in mango (Mangifera indica L.) Biol Control 64:37–44. doi: 10.1016/j.biocontrol.2012.10.006 CrossRefGoogle Scholar
  72. De RK, Ali SS, Dwivedi RP (2001) Effect of interaction between Fusarium oxysporum f.sp. lentis and Meloidogyne javanica on lentil. Indian J Pulses Res 14:71–73Google Scholar
  73. Deadman M, Al Hasani H, Al Sadi A (2006) Solarization and biofumigation reduce Pythium aphanidermatum induced damping-off and enhance vegetative growth of greenhouse cucumber in Oman. J Plant Pathol 88:335–337Google Scholar
  74. Del Ponte EM, Spolti P, Ward TJ et al (2014) Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology. doi: 10.1094/PHYTO-04-14-0102-R PubMedGoogle Scholar
  75. Deytieux V, Bernicot MH, Cellier V, et al. (2014) An experimental network to study pesticide free cropping systems in arable crops. In: Szilvássy Z (ed) 13th Congr. Eur. Soc. Agron. Debrecen, Hungary, p 339–340Google Scholar
  76. Diab HG, Hu S, Benson DM (2003) Suppression of Rhizoctonia solani on impatiens by enhanced microbial activity in composted swine waste-amended potting mixes. Phytopathology 93:1115–1123. doi: 10.1094/PHYTO.2003.93.9.1115 PubMedCrossRefGoogle Scholar
  77. Dias MC (2012) Phytotoxicity: an overview of the physiological responses of plants exposed to fungicides. J Bot. doi: 10.1155/2012/135479 Google Scholar
  78. Dick WA, Van Doran DM (1985) Continuous tillage and rotation combinations effects on corn, soybean, and oat yields. Agron J 77:459–465CrossRefGoogle Scholar
  79. Dole JM, Wilkins HF (2004) Floriculture principles and species. Prentice Hall, Englewood. Cliffs, New JerseyGoogle Scholar
  80. Dorrance AE, Robertson AE, Cianzo S et al (2009) Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments. Plant Dis 93:875–882. doi: 10.1094/PDIS-93-9-0875 CrossRefGoogle Scholar
  81. Dorsainvil F, Durr C, Justes E, Carrera A (2005) Characterisation and modelling of white mustard (Sinapis alba L.) emergence under several sowing conditions. Eur J Agron 23:146–158. doi: 10.1016/j.eja.2004.11.002 CrossRefGoogle Scholar
  82. du Toit LJ (2004) Management of diseases in seed crops, in Encyclopedia of Plant and Crop Science. In: Dekker GRM (ed) Encycl. Plant Crop Sci. New York, p 675–677Google Scholar
  83. Dumroese RK, James RL (2005) Root diseases in bareroot and container nurseries of the Pacific Northwest: epidemiology, management, and effects on outplanting performance. New For 30:185–202. doi: 10.1007/s11056-005-4422-7 CrossRefGoogle Scholar
  84. Duniway JM (1983a) Role of physical factors in the develop-ment of Phytophthora diseases. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora its Biol. Taxon. Ecol. Pathol. American Phytopathological Society, Saint Paul, MN, pp 175–187Google Scholar
  85. Duniway JM (1983b) Role of physical factors in the develop-ment of Phytophthora diseases. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora its Biol. Taxon. Ecol. Pathol. American Phytopathological Society, St. Paul, Minn, USA, pp 175–187Google Scholar
  86. Dürr C, Aubertot J-N (2000) Emergence of seedlings of sugar beet (Beta vulgaris L.) as affected by the size, roughness and position of aggregates in the seedbed. Plant Soil 219:211–220. doi: 10.1023/A:1004723901989 CrossRefGoogle Scholar
  87. Dürr C, Aubertot JN, Richard G et al (2001) SIMPLE: a model for SIMulation of PLant Emergence predicting the effects of soil tillage and sowing operations. Soil Sci Soc Am J 65:414–442. doi: 10.2136/sssaj2001.652414x CrossRefGoogle Scholar
  88. Dürr C, Constantin J, Wagner M-H, Navier H, Demilly D, Göertz S, Nesi N (2016) Virtual modeling based on deep phenotyping provides complementary data to field experiments to predict plant emergence in oilseed rape genotypes. Eur J Agron 79:90–99. doi: 10.1016/j.eja.2016.06.001 CrossRefGoogle Scholar
  89. Ellis ML, Arias MMD, Jimenez DRC et al (2012) First report of Fusarium commune causing damping-off, seed rot, and seedling root rot on soybean (Glycine max) in the United States. Plant Dis 97:284. doi: 10.1094/PDIS-07-12-0644-PDN CrossRefGoogle Scholar
  90. El-Metwally MA, Sakr MT (2010) A novel strategy for controlling damping-off and charcoal rot diseases of sunflower plants grown under calcareous-saline soil using spermine, potassium and zinc. Plant Pathol J 9:1–13CrossRefGoogle Scholar
  91. Enjalbert J, Borg J, Forst E, et al. (2016) New challenges for breeding varieties adapted to mixed cropping systems. In: Lamichhane JR, Arseniuk E, Messéan A (eds) Breed. IPM Sustain. low-input Agric. Syst. Radzików, p 30Google Scholar
  92. Farooq M, Siddique MKH (2015) Conservation agriculture: concepts, brief history, and impacts on agricultural systems. In: Farooq M, Siddique MKH (eds) Conserv. Agric. Springer International Publishing, Cham, pp 3–17Google Scholar
  93. Farr DF, Rossman AY (2012) Fungal nomenclature database, systematic mycology and microbiology laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/fungushost/FungusHost.cfm.
  94. Filer THJ, Peterson GW (1975) Damping-off. In: Peterson GW, Smith RS (eds) For. Nurs. Dis. United States. USDA Forest Service. Agriculture Handbook No. 470, Washington DC, pp 6–8Google Scholar
  95. Foy CD (1984) Physiological effects of hydrogen, aluminium and manganese toxicities in acid soil. In: Pearson RW, Adams F (eds) Soil acidity liming, 2nd Editio. American Society of Agronomy, Wisconsin, pp 57–97Google Scholar
  96. Garibaldi A, Gilardi G, Ortu G, Gullino ML (2013) First report of damping-off caused by Pythium aphanidermatum on leaf beet (Beta vulgaris subsp. vulgaris) in Italy. Plant Dis 97:292. doi: 10.1094/PDIS-08-12-0746-PDN CrossRefGoogle Scholar
  97. Garzón CD, Molineros JE, Yánez JM et al (2011) Sublethal doses of Mefenoxam enhance Pythium damping-off of geranium. Plant Dis 95:1233–1238. doi: 10.1094/PDIS-09-10-0693 CrossRefGoogle Scholar
  98. Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086PubMedCrossRefGoogle Scholar
  99. Gerbore J, Benhamou N, Vallance J et al (2014) Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ Sci Pollut Res 21:4847–4860. doi: 10.1007/s11356-013-1807-6 CrossRefGoogle Scholar
  100. Ghimire SR, Richardson PA, Moorman GW et al (2009) An in-situ baiting bioassay for detecting Phytophthora species in irrigation runoff containment basins. Plant Pathol 58:577–583. doi: 10.1111/j.1365-3059.2008.02016.x CrossRefGoogle Scholar
  101. Gilligan CA (1983) Modeling of soilborne pathogens. Annu Rev Phytopathol 21:45–64. doi: 10.1146/annurev.py.21.090183.000401 CrossRefGoogle Scholar
  102. Gladstone LA, Moorman GW (1989) Pythium root rot of seedling geraniums associated with various concentrations of nitrogen, phosphorous, and soidium chloride. Plant Dis 73:733–736CrossRefGoogle Scholar
  103. Govaerts B, Fuentes M, Mezzalama M et al (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res 94:209–219. doi: 10.1016/j.still.2006.07.013 CrossRefGoogle Scholar
  104. Gravel V, Martinez C, Antoun H, Tweddell RJ (2005) Antagonist microorganisms with the ability to control Pythium damping-off of tomato seeds in rockwool. BioControl 50:771–786. doi: 10.1007/s10526-005-1312-z CrossRefGoogle Scholar
  105. Grogan RG, Sall MA, Punja ZK (1980) Concepts for modelling root infection by soilborne fungi. Phytopathology 70:361–363CrossRefGoogle Scholar
  106. Gwinn KD, Ownley BH, Greene SE et al (2010) Role of essential oils in control of Rhizoctonia damping-off in tomato with bioactive monarda herbage. Phytopathology 100:493–501. doi: 10.1094/PHYTO-100-5-0493 PubMedCrossRefGoogle Scholar
  107. Hadar Y, Papadopoulou KK (2012) Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu Rev Phytopathol 50:133–153. doi: 10.1146/annurev-phyto-081211-172914 PubMedCrossRefGoogle Scholar
  108. Hammond-Kosack K, Jones JDG (2000) Responses to plant pathogens biochemistry and molecular biology of plants. RockvilleGoogle Scholar
  109. Hansen EM, Myrold DD, Hamm PB (1990) Effects of soil fumigation and cover crops on potential pathogens, microbial activity, nitrogen availability, and seedling quality in conifer nurseries. Phytopathology 80:698–704CrossRefGoogle Scholar
  110. Harman GE (2000) Myths and dogmas of biocontrol—changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393CrossRefGoogle Scholar
  111. Hartley C (1918) Stem lesions caused by excessive heat. J Agric Res 14:595–604Google Scholar
  112. Hartley C (1921) Damping-off in forest nurseries. USDA Bureau of Plant Industry, Washington (DC) Bulletin 99CrossRefGoogle Scholar
  113. Hartley C, Pierce RG (1917) The control of damping-off of coniferous seedlings. USDA Bull 453:32Google Scholar
  114. Harveson RM, Smith JA, Stroup WW (2005) Improving root health and yield of dry beans in the Nebraska Panhandle with a new technique for reducing soil compaction. Plant Dis 89:279–284. doi: 10.1094/PD-89-0279 CrossRefGoogle Scholar
  115. Harvey PR, Warren RA, Wakelin S (2008) The Pythium–Fusarium root disease complex—an emerging constraint to irrigated maize in southern New South Wales. Aust J Exp Agric 48:367–374CrossRefGoogle Scholar
  116. He M, Tian G, Semenov AM, van Bruggen AHC (2011) Short-term fluctuations of sugar beet damping-off by Pythium ultimum in relation to changes in bacterial communities after organic amendments to two soils. Phytopathology 102:413–420. doi: 10.1094/PHYTO-07-11-0189 CrossRefGoogle Scholar
  117. Helgerson OT (1989) Heat damage in tree seedlings and its prevention. New For 3:333–358. doi: 10.1007/BF00030044 CrossRefGoogle Scholar
  118. Henricot B, Pérez Sierra A, Jung T (2014) Phytophthora pachypleura sp. nov., a new species causing root rot of Aucuba japonica and other ornamentals in the United Kingdom. Plant Pathol 63:1095–1109. doi: 10.1111/ppa.12194 CrossRefGoogle Scholar
  119. Hong CX, Moorman GW (2005) Plant pathogens in irrigation water: challenges and opportunities. Crit Rev Plant Sci 24:189–208. doi: 10.1080/07352680591005838 CrossRefGoogle Scholar
  120. Horst RK (2013) Damping-off. Westcott’s plant disease handbook. Springer Netherlands, Dordrecht, p 177CrossRefGoogle Scholar
  121. Howell CR (2007) Effect of seed quality and combination fungicide-Trichoderma spp. seed treatments on pre- and postemergence damping-off in cotton. Phytopathology 97:66–71. doi: 10.1094/PHYTO-97-0066 PubMedCrossRefGoogle Scholar
  122. Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37. doi: 10.1111/j.1439-0434.2006.01189.x CrossRefGoogle Scholar
  123. Huang JW, Kuhlman EG (1990) Fungi associated with damping-off of slash pine seedlings in Georgia. Plant Dis 74:27–30CrossRefGoogle Scholar
  124. Huang X, Zhang N, Yong X et al (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143. doi: 10.1016/j.micres.2011.06.002 PubMedCrossRefGoogle Scholar
  125. Hwang SF, Gossen BD, Turnbull GD et al (2000) Seeding date, temperature, and seed treatment affect Pythium seedling blight of field pea. Can J Plant Pathol 22:392–399. doi: 10.1080/07060660009500458 CrossRefGoogle Scholar
  126. Hwang SF, Ahmed H, Turnbull GD (2008) Effect of crop rotation on canola seedling blight and soil pathogen population dynamics. Can J Plant Pathol 30:369Google Scholar
  127. Iersel MW, Bugbee B (1996) Phytotoxic effects of benzimidazole fungicides on bedding plants. J Amer Soc Hort Sci 121:1095–1102Google Scholar
  128. Ishiguro Y, Asano T, Otsubo K et al (2013) Simultaneous detection by multiplex PCR of the high-temperature-growing Pythium species: P. aphanidermatum, P. helicoides and P. myriotylum. J Gen Plant Pathol 79:350–358. doi: 10.1007/s10327-013-0466-2 CrossRefGoogle Scholar
  129. Islam MT, Hashidoko Y, Deora A et al (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796. doi: 10.1128/AEM.71.7.3786-3796.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Jabaji-Hare S, Neate SM (2005) Nonpathogenic binucleate Rhizoctonia spp. and benzothiadiazole protect cotton seedlings against Rhizoctonia damping-off and alternaria leaf spot in cotton. Phytopathology 95:1030–1036. doi: 10.1094/PHYTO-95-1030 PubMedCrossRefGoogle Scholar
  131. Jackson LW (1940) Effects of H-ion and Al-ion concentrations on damping-off of conifers and certain causative fungi. Phytopathology 30:563–579Google Scholar
  132. James RL (1997) Effects of fertilizer on selected potential plant pathogens in bareroot forest nurseries. In: Haase DL, Rose R (eds) For. Seedl. Nutr. From Nurs. To F. Oregon State University, Corvallis, Oregon, pp 27–39Google Scholar
  133. James RL (2012a) Fusarium root and stem diseases. In: Cram MM, Frank MS, Mallams KM (eds) For. Nurs. Pests. USDA Forest Service. Agriculture Handbook, Washington DC, pp 117–120Google Scholar
  134. James RL (2012b) Damping-off. In: Cram MM, Frank MS, Mallams KM (eds) For. Nurs. Pests. Agric. Handb, vol 680. USDA Forest Service, Washington DC, pp 115–116Google Scholar
  135. Jayaraj J, Radhakrishnan NV, Velazhahan R (2006) Development of formulations of Trichoderma harzianumstrain M1 for control of damping-off of tomato caused by Pythium aphanidermatum. Arch Phytopathol Plant Prot 39:1–8. doi: 10.1080/03235400500094720 CrossRefGoogle Scholar
  136. Jensen B, Knudsen IMB, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94:551–560. doi: 10.1094/PHYTO.2004.94.6.551 PubMedCrossRefGoogle Scholar
  137. Jiang J-H, Tam S-L, Toda T, Chen L-C (2015) Controlling Rhizoctonia damping-off of Chinese mustard by using endomycorrhizal Rhizoctonia spp. isolated from orchid mycorrhizae. Plant Dis 100:85–91. doi: 10.1094/PDIS-06-14-0597-RE CrossRefGoogle Scholar
  138. Jung WJ, An KN, Jin YL et al (2003) Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35:1261–1264. doi: 10.1016/S0038-0717(03)00187-1 CrossRefGoogle Scholar
  139. Kageyama K, Nelson EB (2003) Differential inactiviation of seed exudates stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69:1114–1120. doi: 10.1128/AEM.69.2.1114-1120.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Kaitany R, Melakeberhan H, Bird GW, Safir G (2000) Association of Phytophthora sojae with Heterodera glycines and nutrient stressed soybeans. Nematropica 30:193–199Google Scholar
  141. Kandel YR, Wise KA, Bradley CA et al (2016) Fungicide and cultivar effects on sudden death syndrome and yield of soybean. Plant Dis 100:1339–1350. doi: 10.1094/PDIS-11-15-1263-RE CrossRefGoogle Scholar
  142. Karlsson A (2006) Possible interactions between Rhizoctonia solani and plant parasitic nematodes (PPN) in Swedish potato fields. The Swedish University of Agricultural SciencesGoogle Scholar
  143. Kassaby FY (1985) Solar-heating soil for control of damping-off diseases. Soil Biol Biochem 17:429–434. doi: 10.1016/0038-0717(85)90004-5 CrossRefGoogle Scholar
  144. Kemerait RC, Vidhyasekaran P (2006) Agricultural systems. Concise Encycl plant Pathol:120–122Google Scholar
  145. Khan RA (1977) Effect of high-temperature stress on the growth and seed characteristics of barley and cotton. In: Aksel R, von Borstel RC (eds) Muhammed a. Genet. Divers. Plants. Springer US, Boston, MA, pp 319–324Google Scholar
  146. Kida K, Tojo M, Yano K, Kotani S (2007) First report of Pythium ultimum var. ultimum causing damping-off on okra in Japan. Plant Pathol 56:1042. doi: 10.1111/j.1365-3059.2007.01634.x CrossRefGoogle Scholar
  147. Kilic-Ekici O, Yuen GY (2003) Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology 93:1103–1110. doi: 10.1094/PHYTO.2003.93.9.1103 PubMedCrossRefGoogle Scholar
  148. Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483. doi: 10.1002/ps.689 PubMedCrossRefGoogle Scholar
  149. Kiyumi KSM (2009) Greenhouse cucumber production systems in Oman: a study on the effect of cultivation practices on crop diseases and crop yields. University of ReadingGoogle Scholar
  150. Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. doi: 10.1094/PHYTO.2004.94.11.1259 PubMedCrossRefGoogle Scholar
  151. Koumoutsi A, Chen XH, Henne A et al (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. doi: 10.1128/JB.186.4.1084-1096.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Kraft JM, Haware MP, Halila H et al (2000) Soilborne diseases and their control. In: Knight R (ed) Link. Res. Mark. Oppor. Pulses 21st Century. Kluwer Academic Publishers, Dordrecht, pp 457–466CrossRefGoogle Scholar
  153. Kumar V, Haseeb A (2009) Interactive effect of Meloidogyne incognita and Rhizoctonia solani on the growth and yield of tomato. Indian J Nematol 39:387–388Google Scholar
  154. Lambert EB (1936) A seedling wilt of black locust caused by Phytophthora parasitica. J Agric Res 467–476Google Scholar
  155. Lamichhane JR, Venturi V (2015) Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front Plant Sci 6:doi: 10.3389/fpls.2015.00385.
  156. Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis 100:10–24. doi: 10.1094/PDIS-05-15-0574-FE CrossRefGoogle Scholar
  157. Lamprecht SC, Tewoldemedhin YT, Botha WJ, Calitz FJ (2011) Species complex associated with maize crowns and roots in the KwaZulu-Natal province of South Africa. Plant Dis 95:1153–1158. doi: 10.1094/PDIS-02-11-0083 CrossRefGoogle Scholar
  158. Landis TD (2013) Forest nursery pests: damping-off. For Nurs Notes 2:25–32Google Scholar
  159. Lazreg F, Belabid L, Sanchez J et al (2013a) First report of Fusarium equiseti causing damping-off disease on Aleppo pine in Algeria. Plant Dis 98:1268. doi: 10.1094/PDIS-02-13-0194-PDN CrossRefGoogle Scholar
  160. Lazreg F, Belabid L, Sanchez J et al (2013b) First report of Globisporangium ultimum causing Pythium damping-off on Aleppo pine in Algeria, Africa, and the Mediterranean region. Plant Dis 97:1111. doi: 10.1094/PDIS-07-12-0625-PDN CrossRefGoogle Scholar
  161. Lazreg F, Belabid L, Sanchez J et al (2013c) First report of Fusarium chlamydosporum causing damping-off disease on Aleppo pine in Algeria. Plant Dis 97:1506. doi: 10.1094/PDIS-02-13-0208-PDN CrossRefGoogle Scholar
  162. Lazreg F, Belabid L, Sanchez J et al (2013d) First report of Fusarium redolens as a causal agent of Aleppo pine damping-off in Algeria. Plant Dis 97:997. doi: 10.1094/PDIS-12-12-1169-PDN CrossRefGoogle Scholar
  163. Lazreg F, Belabid L, Sanchez J et al (2013e) First report of Fusarium acuminatum causing damping-off disease on Aleppo pine in Algeria. Plant Dis 97:557. doi: 10.1094/PDIS-06-12-0608-PDN CrossRefGoogle Scholar
  164. Le DP, Smith M, Hudler GW, Aitken E (2014) Pythium soft rot of ginger: detection and identification of the causal pathogens, and their control. Crop Prot 65:153–167. doi: 10.1016/j.cropro.2014.07.021 CrossRefGoogle Scholar
  165. Leach LD (1947) Growth rates of host and pathogen as factors determining the severity of preemergence damping-off. J Agric Res 75:161–179Google Scholar
  166. Leclere V, Bechet M, Adam A et al (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584. doi: 10.1128/AEM.71.8.4577-4584.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Lee TO, Khan Z, Kim SG, Kim YH (2008) Amendment with peony root bark improves the biocontrol efficacy of Trichoderma harzianum against Rhizoctonia solani. J Microbiol Biotechnol 18:1537–1543PubMedGoogle Scholar
  168. Leisso RS, Miller PR, Burrows ME (2009) The influence of biological and fungicidal seed treatments on chickpea (Cicer arietinum) damping off. Can J Plant Pathol 31:38–46. doi: 10.1080/07060660909507570 CrossRefGoogle Scholar
  169. Lemanceau P, Maron P-A, Mazurier S et al (2015) Understanding and managing soil biodiversity: a major challenge in agroecology. Agron Sustain Dev 35:67–81. doi: 10.1007/s13593-014-0247-0 CrossRefGoogle Scholar
  170. Leoni C, de Vries M, ter Braak CJF et al (2013) Fusarium oxysporum f.sp. cepae dynamics: in-plant multiplication and crop sequence simulations. Eur J Plant Pathol 137:545–561. doi: 10.1007/s10658-013-0268-6 CrossRefGoogle Scholar
  171. Lewis JA, Lumsden RD (2001) Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Prot 20:49–56. doi: 10.1016/S0261-2194(00)00052-1 CrossRefGoogle Scholar
  172. Li B, Ravnskov S, Xie G, Larsen J (2011) Differential effects of organic compounds on cucumber damping-off and biocontrol of anatagonistic bacteria. J Plant Pathol 93:43–50. doi: 10.4454/jpp.v93i1.272 CrossRefGoogle Scholar
  173. Li YP, You MP, Colmer TD, Barbetti MJ (2014) Effect of timing and duration of soil saturation on soilborne Pythium diseases of common bean (Phaseolus vulgaris). Plant Dis 99:112–118. doi: 10.1094/PDIS-09-13-0964-RE CrossRefGoogle Scholar
  174. Liao X, Fu Y, Zhang S, Duan YP (2011) First report of damping-off on Basella rubra caused by Rhizoctonia solani anastomosis group 4 in Florida. Plant Dis 96:288. doi: 10.1094/PDIS-08-11-0639 CrossRefGoogle Scholar
  175. Lievens B, Brouwer M, Vanachter ACRC et al (2006) Real-time {PCR} for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci 171:155–165. doi: 10.1016/j.plantsci.2006.03.009 CrossRefGoogle Scholar
  176. Lindstrom MA, Onstad CA (1984) Influence of tillage systems on soil physical parameters and infiltration after planting. J Soil Water Conserv 39:149–152Google Scholar
  177. Liu P, Luo L, Long C (2013) Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biol Control 67:157–162. doi: 10.1016/j.biocontrol.2013.07.011 CrossRefGoogle Scholar
  178. Liu B, Shen W, Wei H et al (2016) Rhizoctonia communities in soybean fields and their relation with other microbes and nematode communities. Eur J Plant Pathol 144:671–686. doi: 10.1007/s10658-015-0805-6 CrossRefGoogle Scholar
  179. Mancini V, Romanazzi G (2014) Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag Sci 70:860–868. doi: 10.1002/ps.3693 PubMedCrossRefGoogle Scholar
  180. Manici LM, Bregaglio S, Fumagalli D, Donatelli M (2014) Modelling soil borne fungal pathogens of arable crops under climate change. Int J Biometeorol 58:2071–2083. doi: 10.1007/s00484-014-0808-6 PubMedCrossRefGoogle Scholar
  181. Mao W, Lewis JA, Hebbar PK, Lumsden RD (1997) Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Dis 81:450–454. doi: 10.1094/PDIS.1997.81.5.450 CrossRefGoogle Scholar
  182. Mao W, Lumsden RD, Lewis JA, Hebbar PK (1998) Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fusarium. Plant Dis 82:294–299. doi: 10.1094/PDIS.1998.82.3.294 CrossRefGoogle Scholar
  183. Maraghni M, Gorai M, Neffati M (2010) Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. South African J Bot 76:453–459. doi: 10.1016/j.sajb.2010.02.092 CrossRefGoogle Scholar
  184. Marcum DB, Davis RM (2006) First report of damping-off of wild rice in California caused by Pythium torulosum. Plant Dis 90:523. doi: 10.1094/PD-90-0523B
  185. Martin FN, Abad ZG, Balci Y, Ivors K (2012a) Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Dis 96:1080–1103. doi: 10.1094/PDIS-12-11-1036-FE CrossRefGoogle Scholar
  186. Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221. doi: 10.1094/PHYTO-03-10-0091 PubMedCrossRefGoogle Scholar
  187. Matny ON (2012) First report of damping-off of okra caused by Phytophthora nicotianae in Iraq. Plant Dis 97:558. doi: 10.1094/PDIS-08-12-0735-PDN CrossRefGoogle Scholar
  188. Matusinsky P, Mikolasova R, Klem K, Spitzer T (2009) Eyespot infection risks on wheat with respect to climatic conditions and soil management. J Plant Pathol 91:93–101Google Scholar
  189. Mavragani DC, Abdellatif L, McConkey B et al (2007) First report of damping-off of durum wheat caused by Arthrinium sacchari in the semi-arid Saskatchewan fields. Plant Dis 91:469. doi: 10.1094/PDIS-91-4-0469A CrossRefGoogle Scholar
  190. McNew GL (1960) The nature, origin, and evolution of parasitism. In: Horsfall JG, Dimond AE (eds) Plant Pathol. An Adv. Treatise. Academic Press, New York, pp 19–69Google Scholar
  191. Mcquilken MP, Gemmell J, Lahdenperä ML (2001) Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. J Phytopathol 149:171–178. doi: 10.1046/j.1439-0434.2001.00602.x
  192. Menzies JD (1963) Survival of microbial plant pathogens in soil. Bot Rev 29:79–122CrossRefGoogle Scholar
  193. Messéan A, Lamichhane JR, Menard J-M (2016) Role of crop diversification to boost IPM and implications for breeding. In: Lamichhane JR, Arseniuk E, Messéan A (eds) Breed. IPM Sustain. low-input Agric. Syst, Radzików, p 6Google Scholar
  194. Meziane H, Van Der Sluis I, Van Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185. doi: 10.1111/j.1364-3703.2005.00276.x PubMedCrossRefGoogle Scholar
  195. Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338. doi: 10.1146/annurev.phyto.42.040803.140325 PubMedCrossRefGoogle Scholar
  196. Misawa T, Kubota M, Sasaki J, Kuninaga S (2015) First report of broccoli foot rot caused by Rhizoctonia solani AG-2-2 IV and pathogenicity comparison of the pathogen with related pathogens. J Gen Plant Pathol 81:15–23. doi: 10.1007/s10327-014-0551-1 CrossRefGoogle Scholar
  197. Montecchio L (2005) Damping-off of beech seedlings caused by Fusarium avenaceum in Italy. Plant Dis 89:1014. doi: 10.1094/PD-89-1014A CrossRefGoogle Scholar
  198. Moorman GW, Kim SH (2004) Species of Pythium from greenhouses in Pennsylvania exhibit resistance to Propamocarb and Mefenoxam. Plant Dis 88:630–632. doi: 10.1094/PDIS.2004.88.6.630 CrossRefGoogle Scholar
  199. Moorman GW, Kang S, Geiser DM, Kim SH (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Dis 86:1227–1231. doi: 10.1094/PDIS.2002.86.11.1227 CrossRefGoogle Scholar
  200. Moreau-Valancogne P, Coste F, Crozat Y, Dürr C (2008) Assessing emergence of bean (Phaseolus vulgaris L.) seed lots in France: field observations and simulations. Eur J Agron 28:309–320. doi: 10.1016/j.eja.2007.09.003 CrossRefGoogle Scholar
  201. Mouttet R, Escobar-Gutiérrez A, Esquibet M et al (2014) Banning of methyl bromide for seed treatment: could Ditylenchus dipsaci again become a major threat to alfalfa production in Europe? Pest Manag Sci 70:1017–1022. doi: 10.1002/ps.3745 PubMedCrossRefGoogle Scholar
  202. Negm FB, Smith OE (1978) Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed. Plant Physiol 62:473–376PubMedPubMedCentralCrossRefGoogle Scholar
  203. Neher DA, Augspurger CK, Wilkinson HT (1987) Influence of age structure of plant populations on damping-off epidemics. Oecologia 74:419–424. doi: 10.1007/BF00378939 PubMedCrossRefGoogle Scholar
  204. Nelson EB (1988) Biological control of Pythium seed rot and preemergence damping-off with Enterobacter cloacae and Erwinia herbicola applied as seed treatments. Plant Dis 72:140–142CrossRefGoogle Scholar
  205. Njoroge SMC, Riley MB, Keinath AP (2008) Effect of incorporation of Brassica spp. residues on population densities of soilborne microorganisms and on damping-off and Fusarium wilt of watermelon. Plant Dis 92:287–294. doi: 10.1094/PDIS-92-2-0287 CrossRefGoogle Scholar
  206. Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Tech 15:3–20. doi: 10.1080/09583150400015904 CrossRefGoogle Scholar
  207. Ongena M, Duby F, Rossignol F et al (2004) Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol Plant-Microbe Interact 17:1009–1018. doi: 10.1094/MPMI.2004.17.9.1009 PubMedCrossRefGoogle Scholar
  208. Onstad DW (2013). Insect resistance management: biology, economics, and prediction. Academic Press, p 560Google Scholar
  209. Otten W, Filipe JAN, Bailey DJ, Gilligan CA (2003) Quantification and analysis of transmission rates for soilborne epidemics. Ecology 84:3232–3239. doi: 10.1890/02-0564 CrossRefGoogle Scholar
  210. Otten W, Filipe JAN, Gilligan CA (2004) An empirical method to estimate the effect of soil on the rate for transmission of damping-off disease. New Phytol 162:231–238. doi: 10.1111/j.1469-8137.2004.01011.x CrossRefGoogle Scholar
  211. Ou SQ, Ji C, Sun FL et al (2015) Rhizoctonia solani AG-4 HG-I causing seedling damping-off of Schisandra chinensis in Jilin province, China. Plant Dis 100:1017. doi: 10.1094/PDIS-05-15-0557-PDN CrossRefGoogle Scholar
  212. Pal KK, McSpadden B (2006) Biological control of plant pathogens. Plant Health Instr. doi: 10.1094/PHI-A-2006-1117-02
  213. Palmero D, Gálvez L, Gil-Serna J, Benito S (2012) Rhizoctonia solani as causal agent of damping off of Swiss chard in Spain. Spanish J Agric Res 10:1117–1120CrossRefGoogle Scholar
  214. Palumbo JD, Yuen GY, Jochum CC et al (2005) Mutagenesis of β-1,3-Glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707. doi: 10.1094/PHYTO-95-0701 PubMedCrossRefGoogle Scholar
  215. Pane C, Spaccini R, Piccolo A et al (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Control 56:115–124. doi: 10.1016/j.biocontrol.2010.10.002 CrossRefGoogle Scholar
  216. Papavizas CG, Davey CB (1961) Saprophytic behavior of Rhizoctonia in soil. Phytopathology 51:693–699Google Scholar
  217. Patterson L-M, Smiley RW, Alderman SM (1998) Effect of seed treatment fungicides and starter fertilizer on root diseases and yield of spring wheat. Fungic Nematic Tests 53:425Google Scholar
  218. Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133. doi: 10.1146/annurev.phyto.39.1.103 PubMedCrossRefGoogle Scholar
  219. Paulitz TC, Smiley RW, Cook RJ (2002) Insights into the prevalence and management of soilborne cereal pathogens under direct seeding in the Pacific Northwest, U.S.A. Can J Plant Pathol 24:416–428. doi: 10.1080/07060660209507029 CrossRefGoogle Scholar
  220. Paulitz TC, Okubara PA, Schillinger WF (2006) First report of damping-off of canola caused by Rhizoctonia solani AG 2-1 in Washington state. Plant Dis 90:829. doi: 10.1094/PD-90-0829B CrossRefGoogle Scholar
  221. Paulitz TC, Schroeder KL, Schillinger WF (2009) Soilborne pathogens of cereals in an irrigated cropping system: effects of tillage, residue management, and crop rotation. Plant Dis 94:61–68. doi: 10.1094/PDIS-94-1-0061 CrossRefGoogle Scholar
  222. Petkowski JE, de Boer RF, Norng S et al (2013) Pythium species associated with root rot complex in winter-grown parsnip and parsley crops in south eastern Australia. Australas Plant Pathol 42:403–411. doi: 10.1007/s13313-013-0211-5 CrossRefGoogle Scholar
  223. Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi: 10.1146/annurev-phyto-082712-102340 PubMedCrossRefGoogle Scholar
  224. Poletto T, Maciel CG, Muniz MFB et al (2015) First report of Fusarium lacertarum causing damping-off in Casuarina equisetifolia in Brazil. Plant Dis 99:1040. doi: 10.1094/PDIS-12-14-1272-PDN CrossRefGoogle Scholar
  225. Polizzi G, Vitale A, Aiello D et al (2007) First report of damping-off and leaf spot caused by Cylindrocladium scoparium on different accessions of bottlebrush cuttings in Italy. Plant Dis 91:769. doi: 10.1094/PDIS-91-6-0769B CrossRefGoogle Scholar
  226. Polizzi G, Aiello D, Castello I et al (2009) First report of damping-off caused by Rhizoctonia solani AG-4 on Mediterranean fan palm in Italy. Plant Dis 94:125. doi: 10.1094/PDIS-94-1-0125A CrossRefGoogle Scholar
  227. Polizzi G, Aiello D, Vitale A et al (2010) First report of damping-off caused by Rhizoctonia solani AG-4 on pink ipê (Tabebuia impetiginosa) in Italy. Plant Dis 95:78. doi: 10.1094/PDIS-10-10-0748 CrossRefGoogle Scholar
  228. Polizzi G, Aiello D, Guarnaccia V et al (2011) First report of damping-off on strawberry tree caused by Colletotrichum acutatum and C. simmondsii in Italy. Plant Dis 95:1588. doi: 10.1094/PDIS-07-11-0567 CrossRefGoogle Scholar
  229. Power JF, Wilhelm WW, Doran JW (1986) Crop residue effects on soil environment and dryland maize and soybean production. Soil Tillage Res 8:101–111CrossRefGoogle Scholar
  230. Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392. doi: 10.1038/nrmicro1643 PubMedCrossRefGoogle Scholar
  231. Pryor BM, Asma M (2007) First report of seedling damping-off of fennel caused by Alternaria petroselini in the Netherlands. Plant Dis 91:1688. doi: 10.1094/PDIS-91-12-1688A CrossRefGoogle Scholar
  232. Punja ZK, Yip R (2003) Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Can J Plant Pathol 25:411–417. doi: 10.1080/07060660309507098 CrossRefGoogle Scholar
  233. Rajkumar M, Lee KJ, Freitas H (2008) Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. South African J Bot 74:268–273. doi: 10.1016/j.sajb.2007.11.014 CrossRefGoogle Scholar
  234. Ramamoorthy V, Samiyappan T, Raguchander R (2002) Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur J Plant Pathol 108:429–441. doi: 10.1023/A:1016062702102 CrossRefGoogle Scholar
  235. Rasmussen SL, Stanghellini ME (1988) Effect of salinity stress on development of pythium blight in Agrostis palustris. Phytopathology 78:1495–1497CrossRefGoogle Scholar
  236. Reeleder RD, Miller J, Capell B, Schooley J (2007) Mefenoxam sensitivity and the impact of fumigation on Pythium species and Phytophthora cactorum in ginseng soils. Can J Plant Pathol 29:427–436. doi: 10.1080/07060660709507489 CrossRefGoogle Scholar
  237. Ren XX, Zhang GZ, Dai WA (2012) First report of damping-off caused by Alternaria japonica on Chinese cabbage seedlings in China. Plant Dis 96:1378. doi: 10.1094/PDIS-04-12-0328-PDN CrossRefGoogle Scholar
  238. Rhodes LH, Myers DK (1989) Effect of seed treatment with metalaxyl or pyroxyfur on damping-off of alfalfa caused by Phytophthora megasperma f.sp. medicaginis. Crop Prot 8:369–372. doi: 10.1016/0261-2194(89)90057-4 CrossRefGoogle Scholar
  239. Roberts DP, Lohrke SM, Meyer SLF et al (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot 24:141–155. doi: 10.1016/j.cropro.2004.07.004 CrossRefGoogle Scholar
  240. Roberts DP, Lakshman DK, McKenna LF et al (2016) Seed treatment with ethanol extract of Serratia marcescens is compatible with Trichoderma isolates for control of damping-off of cucumber caused by Pythium ultimum. Plant Dis 100:1278–1287. doi: 10.1094/PDIS-09-15-1039-RE CrossRefGoogle Scholar
  241. Romo JT, Haferkamp MR (1987) Effects of osmotic potential, potassium chloride, and sodium chloride on germination of greasewood (Sarcobatus vermiculatus). West North Am Nat 47:110–116Google Scholar
  242. Roth LF, Riker AJ (1943) Influence of temperature, moisture, and soil reaction on the damping-off of red pine seedlings by Pythium and Rhizoctonia. J Agric Res 67:273–293Google Scholar
  243. Rothrock CS, Winters SA, Miller PK et al (2012) Importance of fungicide seed treatment and environment on seedling diseases of cotton. Plant Dis 96:1805–1817. doi: 10.1094/PDIS-01-12-0031-SR CrossRefGoogle Scholar
  244. Rovira AD (1986) Influence of crop rotation and tillage on Rhizoctonia bare patch of wheat. Phytopathology 76:669–673CrossRefGoogle Scholar
  245. Russell K (1990) Damping-off. In: Hamm PB, Campbell SJ, Hansen EM (eds) Grow. Heal. seedlings Identif. Manag. pests Northwest For. nurseries. Forest Research Laboratory, Oregon State University. Special publication, Corvallis (OR), p 2–5Google Scholar
  246. Ryu C-M, Kim J, Choi O et al (2006) Improvement of biological control capacity of Paenibacillus polymyxa {E681} by seed pelleting on sesame. Biol Control 39:282–289. doi: 10.1016/j.biocontrol.2006.04.014 CrossRefGoogle Scholar
  247. Sabaratnam S, Traquair JA (2002) Formulation of a streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253. doi: 10.1006/bcon.2001.1014 CrossRefGoogle Scholar
  248. Safaiefarahani B, Mostowfizadeh-Ghalamfarsa R, Hardy GESJ, Burgess TI (2015) Re-evaluation of the Phytophthora cryptogea species complex and the description of a new species, Phytophthora pseudocryptogea sp. nov. Mycol Prog 14:1–12. doi: 10.1007/s11557-015-1129-9 CrossRefGoogle Scholar
  249. Samac DA, Schraber S, Barclay S (2014) A mineral seed coating for control of seedling diseases of alfalfa suitable for organic production systems. Plant Dis 99:614–620. doi: 10.1094/PDIS-03-14-0240-RE CrossRefGoogle Scholar
  250. Sánchez-Borges CA, Souza-Perera RA, Zúñiga-Aguilar JJ et al (2015) First report of Phytophthora capsici causing damping-off of Capsicum chinense in the Yucatan peninsula. Plant Dis 100:1247. doi: 10.1094/PDIS-09-15-1047-PDN CrossRefGoogle Scholar
  251. Sanogo S (2004) Response of chile pepper to Phytophthora capsici in relation to soil salinity. Plant Dis 88:205–209CrossRefGoogle Scholar
  252. Saroj A, Kumar A, Saeed ST, et al. (2013) First report of Tagetes erecta damping-off caused by Ceratobasidium sp. from India. Plant Dis 97:1251. doi: 10.1094/PDIS-02-13-0145-PDN
  253. Scattolin L, Montecchio L (2007) First report of damping-off of common oak plantlets caused by Cylindrocladiella parva in Italy. Plant Dis 91:771. doi: 10.1094/PDIS-91-6-0771B CrossRefGoogle Scholar
  254. Schillinger WF, Young DL, Kennedy AC, Paulitz TC (2010) Diverse no-till irrigated crop rotations instead of burning and plowing continuous wheat. F Crop Res 115:39–49. doi: 10.1016/j.fcr.2009.10.001 CrossRefGoogle Scholar
  255. Schmidt CS, Agostini F, Leifert C et al (2004) Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94:351–363. doi: 10.1094/PHYTO.2004.94.4.351 PubMedCrossRefGoogle Scholar
  256. Schmitthenner AF, Canaday CH (1983) Role of chemical factors in development of Phytophthora diseases. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytoplithora its Biol. Taxon. Ecol. Pathol. American Phytopathological Society, St. Paul, pp 175–187Google Scholar
  257. Schmitthenner AF, Van Doran DM (1985) Integrated control of root rot of soybean caused by Phytophthora megasperma f. sp. glycinea. In: Parker CA, Rovira AD, Moore KJ et al (eds) Ecol. Manag. Soilborne plant Pathog. American Phytopathological Society, St. Paul, pp 263–266Google Scholar
  258. Schroeder KL, Martin FN, de Cock AWAM et al (2012b) Molecular detection and quantification of Pythium species: evolving taxonomy, new tools, and challenges. Plant Dis 97:4–20. doi: 10.1094/PDIS-03-12-0243-FE CrossRefGoogle Scholar
  259. Schwanck AA, Meneses PR, Farias CRJ et al (2015) Bipolaris oryzae seed borne inoculum and brown spot epidemics in the subtropical lowland rice-growing region of Brazil. Eur J Plant Pathol 142:875–885. doi: 10.1007/s10658-015-0659-y CrossRefGoogle Scholar
  260. Shang H, Chen J, Goodman J, Handelsman RM (1999) Behavior of Pythium torulosum zoospores during their interaction with tobacco roots and Bacillus cereus. Curr Microbiol 38:199–204PubMedCrossRefGoogle Scholar
  261. Smiley RW, Uddin W, Ott S, Rhinhart KEL (1990) Influence of flutolonil and tolclofos-methyl on root and culm diseases of winter wheat. Plant Dis 74:788–791CrossRefGoogle Scholar
  262. Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. American Phytopathological Society, St PaulGoogle Scholar
  263. Starkey T, Enebak SA (2012) Rhizoctonia blight of southern pines. In: Cram MM, Frank MS, Mallams KM (eds) For. Nurs. Pests. USDA Forest Service. Agriculture Handbook, Washington DC, pp 63–65Google Scholar
  264. Stewart-Wade SM (2011) Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrig Sci 29:267–297. doi: 10.1007/s00271-011-0285-1 CrossRefGoogle Scholar
  265. Stout M, Davis J (2009) Keys to the increased use of host plant resistance in integrated pest management. In: Peshin R, Dhawan AK (eds) Integr. Pest Manag. Innov. Process, vol 1. Springer Netherlands, Dordrecht, pp 163–181CrossRefGoogle Scholar
  266. Summerell BA, Salleh B, Leslie JF (2003) A utilitarian approach to Fusarium identification. Plant Dis 87:117–128. doi: 10.1094/PDIS.2003.87.2.117 CrossRefGoogle Scholar
  267. Tachibana H (1983) Association of Phytophthora root rot of soybean with conservation tillage. Phytopathology 73:844Google Scholar
  268. Taylor RJ, Salas B, Secor GA et al (2002) Sensitivity of North American isolates of Phytophthora erythroseptica and Pythium ultimum to mefenoxam (metalaxyl). Plant Dis 86:797–802. doi: 10.1094/PDIS.2002.86.7.797 CrossRefGoogle Scholar
  269. Tillotson CR (1917) Nursery practice on the national forests. USDA Bull 479:86Google Scholar
  270. Tint H (1945) Studies in the Fusarium damping-off of conifers. II. Relation of age of host, pH, and some nutritional factors to the pathogenicity of Fusarium. Phytopathology 35:440–457Google Scholar
  271. Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 95:1438–1444. doi: 10.1094/PHYTO-95-1438 PubMedCrossRefGoogle Scholar
  272. Ünal F, Sara Dolar F (2012) First report of Rhizoctonia solani AG 8 on wheat in Turkey. J Phytopathol 160:52–54. doi: 10.1111/j.1439-0434.2011.01856.x CrossRefGoogle Scholar
  273. UNEP (2006) Handbook for the Montreal protocol on substances that deplete the ozone layer (seventh edition)Google Scholar
  274. van der Plank JE (1963) Plant disease: epidemics and control. Academic Press, New-York, LondonGoogle Scholar
  275. van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347PubMedPubMedCentralCrossRefGoogle Scholar
  276. Vidya Sagar B, Krishna Rao V, Varaprasad KS (2012) Interaction of Rhizoctonia solani and meloidogyne incognita on tomato. Indian J Nematol 42:66–70Google Scholar
  277. Vitale A, Castello I, D’Emilio A, Mazzarella R, Perrone G, Epifani F, Polizzi G (2013) Short-term effects of soil solarization in suppressing Calonectria microsclerotia. Plant Soil 368:603–617. doi: 10.1007/s11104-012-1544-5 CrossRefGoogle Scholar
  278. Wang PP, Wu XH (2012) First report of sugar beet seedling damping-off caused by Binucleate Rhizoctonia AG-A in China. Plant Dis 96:1696. doi: 10.1094/PDIS-05-12-0492-PDN CrossRefGoogle Scholar
  279. Wang X, Sun C, Gao S et al (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721. doi: 10.1016/S0045-6535(00)00520-8 PubMedCrossRefGoogle Scholar
  280. Weiland JJ, Sundsbak JL (2000) Differentiation and detection of sugar beet fungal pathogens using PCR amplification of actin coding sequences and the ITS region of the rRNA Gene. Plant Dis 84:475–482. doi: 10.1094/PDIS.2000.84.4.475 CrossRefGoogle Scholar
  281. Weiland J, Littke W, Haase D (2013) Forest nurseries face critical choices with the loss of methyl bromide fumigation. Calif Agric 67:153–161CrossRefGoogle Scholar
  282. Weiland JE, Santamaria L, Grünwald NJ (2014) Sensitivity of Pythium irregulare, P. sylvaticum, and P. ultimum from forest nurseries to mefenoxam and fosetyl-Al, and control of Pythium damping-off. Plant Dis 98:937–942. doi: 10.1094/PDIS-09-13-0998-RE CrossRefGoogle Scholar
  283. Wen B (2015) Effects of high temperature and water stress on seed germination of the invasive species Mexican sunflower. PLoS One 10:1–13. doi: 10.1371/journal.pone.0141567 Google Scholar
  284. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511. doi: 10.1093/jexbot/52.suppl_1.487 PubMedCrossRefGoogle Scholar
  285. Wijetunga C, Baker R (1979) Modeling of phenomena associated with soil suppressive to Rhizoctonia solani. Ecol Epidemiol 69:1287–1293Google Scholar
  286. Wong DH, Barbetti MJ, Sivasithamparam K (1984) Effects of soil temperature and moisture on the pathogenicity of fungi associated with root rot of subterranean clover. Aust J Agric Res 35:675–684CrossRefGoogle Scholar
  287. Workneh F, Yang XB, Tylka GL (1998) Effect of tillage practices on vertical distribution of Phytophthora sojae. Plant Dis 82:1258–1263. doi: 10.1094/PDIS.1998.82.11.1258 CrossRefGoogle Scholar
  288. Wright E (1944) Damping-off in broadleaf nurseries of the Great Plains Region. J Agric Res 69:77–94Google Scholar
  289. Wright E (1957) Influence of temperature and moisture on damping-off of American and Siberian elm, black locust, and desertwillow. Phytopathology 47:658–662Google Scholar
  290. Wright SAI, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:282–292. doi: 10.1128/AEM.67.1.284-292.2001 CrossRefGoogle Scholar
  291. Yang GH, Conner RL, Chen YY (2007) First report of damping-off of Swiss chard caused by Rhizoctonia solani AG-4 HG I and Binucleate Rhizoctonia AG-A in China. Plant Dis 91:1516. doi: 10.1094/PDIS-91-11-1516A CrossRefGoogle Scholar
  292. Yangui T, Rhouma A, Triki MA et al (2008) Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains. Crop Prot 27:189–197. doi: 10.1016/j.cropro.2007.05.005 CrossRefGoogle Scholar
  293. Yitbarek SM, Verma PR, Gugel RK, Morrall RAA (1988) Effect of soil temperature and inoculum density on pre-emergence damping-off of canola caused by Rhizoctonia solani. Can J Plant Pathol 10:93–98. doi: 10.1080/07060668809501739 CrossRefGoogle Scholar
  294. You MP, Sivasithamparam K, Riley IT, Barbetti MJ (2000) The occurrence of root-infecting fungi and parasitic nematodes in annual Medicago species in Western Australian pastures. Aust J Agric Res 51:435–444CrossRefGoogle Scholar
  295. Zappia RE, Huberli D, Hardy GESJ, Bayliss KL (2014) Fungi and oomycetes in open irrigation systems: knowledge gaps and biosecurity implications. Plant Pathol 63:961–972. doi: 10.1111/ppa.12223 CrossRefGoogle Scholar
  296. Zhang XY, Huo HL, Wang W et al (2015) First report of damping-off and seedling blight on oat caused by Rhizoctonia solani AG 2-1 in China. Plant Dis 100:653. doi: 10.1094/PDIS-09-15-0968-PDN CrossRefGoogle Scholar
  297. Zinger L, Gobet A, Pommier T (2012) Two decades of describing the unseen majority of aquatic microbial diversity. Mol Ecol 21:1878–1896. doi: 10.1111/j.1365-294X.2011.05362.x PubMedCrossRefGoogle Scholar
  298. Zitnick-Anderson KK, Nelson BD (2014) Identification and pathogenicity of Pythium on soybean in North Dakota. Plant Dis 99:31–38. doi: 10.1094/PDIS-02-14-0161-RE CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Jay Ram Lamichhane
    • 1
  • Carolyne Dürr
    • 2
  • André A. Schwanck
    • 3
  • Marie-Hélène Robin
    • 4
  • Jean-Pierre Sarthou
    • 5
  • Vincent Cellier
    • 6
  • Antoine Messéan
    • 1
  • Jean-Noël Aubertot
    • 3
  1. 1.INRA, Eco-Innov Research UnitThiverval-GrignonFrance
  2. 2.INRA, IRHS 1345BeaucouzéFrance
  3. 3.INRA, UMR AGIR 1248Castanet-TolosanFrance
  4. 4.Université de Toulouse, INPT, EI-Purpan, UMR AGIR 1248Castanet-TolosanFrance
  5. 5.Université de Toulouse, INPT, ENSAT, UMR AGIR 1248Castanet-TolosanFrance
  6. 6.INRA, Domaine expérimental d’Epoisses UE 0115BretenièreFrance

Personalised recommendations