Using cover crops to mitigate and adapt to climate change. A review

Review Article


Cover crops have long been touted for their ability to reduce erosion, fix atmospheric nitrogen, reduce nitrogen leaching, and improve soil health. In recent decades, there has been resurgence in cover crop adoption that is synchronous with a heightened awareness of climate change. Climate change mitigation and adaptation may be additional, important ecosystem services provided by cover crops, but they lie outside of the traditional list of cover cropping benefits. Here, we review the potential for cover crops to mitigate climate change by tallying all of the positive and negative impacts of cover crops on the net global warming potential of agricultural fields. Then, we use lessons learned from two contrasting regions to evaluate how cover crops affect adaptive management for precipitation and temperature change. Three key outcomes from this synthesis are (1) Cover crop effects on greenhouse gas fluxes typically mitigate warming by ~100 to 150 g CO2 e/m2/year, which is higher than mitigation from transitioning to no-till. The most important terms in the budget are soil carbon sequestration and reduced fertilizer use after legume cover crops. (2) The surface albedo change due to cover cropping, calculated for the first time here using case study sites in central Spain and Pennsylvania, USA, may mitigate 12 to 46 g CO2 e/m2/year over a 100-year time horizon. And (3) Cover crop management can also enable climate change adaptation at these case study sites, especially through reduced vulnerability to erosion from extreme rain events, increased soil water management options during droughts or periods of soil saturation, and retention of nitrogen mineralized due to warming. Overall, we found very few tradeoffs between cover cropping and climate change mitigation and adaptation, suggesting that ecosystem services that are traditionally expected from cover cropping can be promoted synergistically with services related to climate change.


Adaptive management Agriculture Albedo Cover crops Climate change Global warming Greenhouse gases Mitigation Review 


  1. Alonso-Ayuso M, Gabriel JL, Quemada M (2014) The kill date as a management tool for cover cropping success. PLoS One 9:e109587. doi:10.1371/journal.pone.0109587 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson-Teixeira K, Snyder P, Twine T, Cuadra S, Costa M, Delucia E (2012) Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat Clim Chang 2:177–181. doi:10.1038/nclimate1346 CrossRefGoogle Scholar
  3. Basche A, Miguez FE, Kaspar T, Castellano MJ (2014) Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J Soil Water Conserv 69:471–482. doi:10.2489/jswc.69.6.471 CrossRefGoogle Scholar
  4. Berhe A, Harte J, Harden JW, Torn MS (2007) The significance of the erosion induced carbon sink. Bioscience 57:337–346. doi:10.1641/B570408 CrossRefGoogle Scholar
  5. Blad BL, Baker DG (1972) Reflected radiation from a soybean crop. Agron J 64:277–280. doi:10.2134/agronj1972.00021962006400030006x CrossRefGoogle Scholar
  6. Blanco-Canqui HB, Shaver TM, Lindquist JL, Shapiro CA, Elmore RW, Francis CA, Hergert GW (2015) Cover crops and ecosystem services: insights from studies in temperate soils. Agron J 107:2449–2474. doi:10.2134/agronj15.0086 CrossRefGoogle Scholar
  7. Brand FS, Jax K (2007) Focusing the meaning(s) of resilience: resilience as a descriptive concept and a boundary object. Ecology Society 12:23. Accessed 10 June 2016
  8. Bright RM, Zhao K, Jackson R, Cherubini F (2015) Quantifying surface albedo changes and direct biogeophysical climate forcings of forestry activities. Glob Chang Biol 21:3246–3266. doi:10.1111/gcb.12951 CrossRefPubMedGoogle Scholar
  9. Camargo GGT, Ryan MG, Richard TM (2013) Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. Bioscience 63:263–273. doi:10.1525/bio.2013.63.4.6 CrossRefGoogle Scholar
  10. Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  11. Chen G, Weil RR (2011) Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res 117:17–27. doi:10.1016/j.still.2011.08.001 CrossRefGoogle Scholar
  12. Clark AJ, ed (2007) Managing cover crops profitably, 3rd edn. Sustainable agriculture network handbook series 9. Sustainable Agriculture Network, BeltsvilleGoogle Scholar
  13. Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ 135:268–278. doi:10.1016/j.agee.2009.10.005
  14. Dabney SM, Delgado JA, Reeves DW (2001) Using winter cover crops to improve soil and water quality. Commun Soil Sci Plant Anal 32:1221–1250. doi:10.1081/CSS-100104110 CrossRefGoogle Scholar
  15. Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors, and mitigating strategies. Nut Cycling Agroecosyst 64:237–256. dio:10.1023/A:1021471531188
  16. Eagle A, Olander L, Henry L, Haugen-Kozyra L, Millar N, Robertson G (2012) Greenhouse gas mitigation potential of agricultural land management in the United States: a synthesis of the literature. Report NI R 10–04, 3rd edn. Nicholas Institute for Environmental Policy Solutions, Duke University, North CarolinaGoogle Scholar
  17. Finney DM, Eckert SE, Kaye JP (2016a) Drivers of nitrogen dynamics in ecologically based agriculture revealed by long-term, high frequency field measurements. Ecol Appl 25:2210–2227. doi:10.1890/14-1357.1 CrossRefGoogle Scholar
  18. Finney D, White C, Kaye J (2016b) Biomass production and carbon:nitrogen ratio influence ecosystem services from cover crop mixtures. Agron J 108:39–52. doi:10.2134/agronj15.0182 CrossRefGoogle Scholar
  19. Gabriel JL, Garrido A, Quemada M (2013) Cover crops effect on farm benefits and nitrate leaching: linking economic and environmental analysis. Agric Syst 121:23–32. doi:10.1016/j.agsy.2013.06.004 CrossRefGoogle Scholar
  20. Gabriel JL, Muñoz-Carpena R, Quemada M (2012) Role of cover crops in irrigated systems: I. Nitrate leaching and soil mineral nitrogen accumulation. Agric Ecosyst Environ 155:50–61. doi:10.1016/j.agee.2012.03.021 CrossRefGoogle Scholar
  21. Gabriel JL, Quemada M (2011) Replacing bare fallow with cover crops in a maize cropping system: yield, N uptake and fertiliser fate. Eur J Agron 34:133–143. doi:10.1016/j.eja.2010.11.006 CrossRefGoogle Scholar
  22. García-González I, Quemada M, Gabriel JL, Hontoria C (2016) Arbuscular mycorrhizal fungal activity responses to winter cover crops in a sunflower and maize cropping system. Appl Soil Ecol 102:10–18. doi:10.1016/j.apsoil.2016.02.006 CrossRefGoogle Scholar
  23. Gervois S, Ciais P, de Noblet-Ducoudré N, Brisson N, Vuichard N, Viovy N (2008) Carbon and water balance of European croplands throughout the twentieth century. Global Biogeochem Cy 22:GB2022. doi:10.1029/2007GB003018 CrossRefGoogle Scholar
  24. Gijsman AJ, Hoogenboom G, Parton WJ, Kerridge PC (2002) Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY. Agron J 94:462–474. doi:10.2134/agronj2002.4620 CrossRefGoogle Scholar
  25. Guardia G, Abalos D, García-Marco S, Quemada M, Alonso-Ayuso M, Cárdenas LM, Dixon ER, Vallejo A (2016) Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences 13:5245–5257. doi:10.5194/bg-13-5245-2016 CrossRefGoogle Scholar
  26. Hayhoe K, Wake CP, Huntington TG, Luo L, Schwartz MD, Sheffield J, Wood E, Anderson B, Bradbury J, DeGaetano A, Troy TJ, Wolfe D (2007) Past and future changes in climate and hydrological indicators in the US northeast. Clim Dyn 28:381–407. doi:10.1007/s00382-006-0187-8 CrossRefGoogle Scholar
  27. IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, Eds., Cambridge University Press, CambridgeGoogle Scholar
  28. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, CambridgeGoogle Scholar
  29. Iqbal M (1983) An introduction to solar radiation. Academic Press Canada, OntarioGoogle Scholar
  30. Justes E, Beaudoin N, Bertuzzi P, Charles R, Constantin J, Dürr C, Hermon C, Joannon A, Le Bas C, Mary B, Mignolet C, Montfort F, Ruiz L, Sarthou JP, Souchère V, Tournebize J, Savini I, Réchauchère O (2012) Réduire les fuites de nitrate au moyen de cultures intermédiaires : conséquences sur les bilans d'eau et d'azote, autres services écosystémiques. Synthèse du rapport d'étude, INRA (France), 60 p. Accessed 12 June 2016
  31. Ketterings QM, Swink SN, Duiker SW, Czymmek KJ, Beegle DB, Cox WJ (2015) Integrating cover crops for nitrogen management in corn systems on northeastern U.S. dairies. Agron J 107:1365–1376. doi:10.2134/agronj14.0385 CrossRefGoogle Scholar
  32. Lal R (2015) Soil carbon sequestration and aggregation by cover cropping. J Soil Water Conserv 70:329–339. doi:10.2489/jswc.70.6.329 CrossRefGoogle Scholar
  33. Lu H, Bryant RB, Buda AR, Collick AS, Folmar GJ, Kleinman PJA (2015) Long-term trends in climate and hydrology in an agricultural, headwater watershed of Central Pennsylvania, USA J hydrology. Reg Stud 4:713–731. doi:10.1016/j.ejrh.2015.10.004 Google Scholar
  34. Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013) The critical role of extreme heat for maize production in the United States. Nature. Clim Chang 3:497–501. doi:10.1038/nclimate1832 CrossRefGoogle Scholar
  35. Matthias AD, Fimbres A, Sano EE, Post DF, Accioly L, Batchily AK, Ferreira LG (2000) Surface roughness effects on soil albedo. Soil Sci Soc Am J 64:1035–1041. doi:10.2136/sssaj2000.6431035x CrossRefGoogle Scholar
  36. McDaniel M, Tiemann L, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570. doi:10.1890/13-0616.1 CrossRefPubMedGoogle Scholar
  37. McGuire AM, Bryant DC, Denison RF (1998) Wheat yields, nitrogen uptake, and soil moisture following winter legume cover crop vs. fallow. Agron J 90:404–410. doi:10.2134/agronj1998.00021962009000030015x CrossRefGoogle Scholar
  38. Miguez FE, Bollero GA (2005) Review of corn yield response underwinter cover cropping systems using meta-analytic methods. Crop Sci 45:2318–2329. doi:10.2135/cropsci2005.0014 CrossRefGoogle Scholar
  39. Mínguez MI, Ruiz-Ramos M, Díaz-Ambrona CH, Quemada M, Sau F (2007) First-order agricultural impacts assessed with various high-resolution climate models in the Iberian peninsula—a region with complex orography. Clim Chang 81:123–143. doi:10.1007/s10584-006-9223-2 CrossRefGoogle Scholar
  40. Mitchell DC, Castellano MJ, Sawyer JE, Pantoja JL (2013) Cover crop effects on nitrous oxide emissions from a maize-based cropping system: role of carbon inputs. Soil Sci Soc Am J 77:1765–1773. doi:10.2136/sssaj2013.02.0074 CrossRefGoogle Scholar
  41. Mitchell JP, Peters DW, Shennan C (1999) Changes in soil water storage in winter fallowed and cover cropped soils. J Sustain Ag 15:19–31. doi:10.1300/J064v15n02_04 CrossRefGoogle Scholar
  42. Monteith JL (1959) The reflection of shortwave radiation by vegetation. Q J Roy Meteor Soc 85:386–392. doi:10.1002/qj.49708536607 CrossRefGoogle Scholar
  43. Monteith JL, Szeicz G (1961) The radiation balance of bare soil and vegetation. Q J Roy Meteor Soc 87:159–170. doi:10.1002/qj.49708737205 CrossRefGoogle Scholar
  44. Murrell EG, Schipanski ME, Finney DM, Hunter MC, Burgess M, LaChance JC, Baraibar B, White CM, Mortensen DA, Kaye JP (2017) Planting date and community composition affect performance of cover crop mixtures over time. Agron J. doi:10.2134/agronj2016.03.0174 Google Scholar
  45. Oguntunde PG, van de Giesen N (2004) Crop growth and development effects on surface albedo for maize can cowpea fields in Ghana, West Africa. Int J Biometeorol 49:106–112. doi:10.1007/s00484-004-0216-4 CrossRefPubMedGoogle Scholar
  46. Olesen JE, Carter TR, Fronzek S, Holt T, Mínguez MI, Ruiz-Ramos M, Díaz-Ambrona CH, Quemada M, Morales P, Palutikov J, Sykes M et al (2007) Certainties and uncertainties in projected impacts of climate change on European agriculture, forestry and ecosystems. Clim Chang 81:343–355. doi:10.1007/s10584-006-9216-1 CrossRefGoogle Scholar
  47. Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric Ecosyst Environ 200:33–41. doi:10.1016/j.agee.2014.10.024 CrossRefGoogle Scholar
  48. Poffenbarger H, Mirsky SB, Weil RR, Kramer M, Spargo JT, Cavagelli MA (2015) Legume proportion, poultry litter, and tillage effects on cover crop decomposition. Agron J 107:2083–2096. doi:10.2134/agronj15.0065 CrossRefGoogle Scholar
  49. Post DF, Fimbres A, Matthias AD, Sano EE, Accioly L, Batchily AK, Ferreira LG (2000) Predicting soil albedo from soil color and spectral reflectance data. Soil Sci Soc Am J 64:1027–1034. doi:10.2136/sssaj2000.6431027x CrossRefGoogle Scholar
  50. Quemada M, Daughtry CST (2016) Spectral indices to improve crop residue cover estimation under varying moisture conditions. Remote Sens 8: article # 660. doi:10.3390/rs8080660
  51. Quemada M, Baranski M, Nobel-de Lange MNJ, Vallejo A, Cooper JM (2013) Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric Ecosyst Environ 174:1–10. doi:10.2136/sssaj2000.6431035x CrossRefGoogle Scholar
  52. Ramírez-García J, Alonso-Ayuso M, Gabriel JL, Quemada M (2015a) Quantitative characterization of five cover crop species. J Agric Sci 153:1174–1186. doi:10.1017/S0021859614000811 CrossRefGoogle Scholar
  53. Ramírez-García J, Carrillo JM, Ruiz M, Alonso-Ayuso M, Quemada M (2015b) Multicriteria decision analysis applied to cover crop species and cultivars selection. Field Crop Res 175:106–115. doi:10.1016/j.fcr.2015.02.008 CrossRefGoogle Scholar
  54. Ries JB, Hirt U (2008) Permanence of soil surface crusts on abandoned farmland in the Central Ebro Basin/Spain. Catena 72:282–296. doi:10.1016/j. catena.2007.06.001 CrossRefGoogle Scholar
  55. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925. doi:10.1126/science.289.5486.1922 CrossRefPubMedGoogle Scholar
  56. Rosenzweig C, Tubiello FN (2007) Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig Adapt Strat Glob Change 12:855–873. doi:10.007/s11027-007-9103-8 CrossRefGoogle Scholar
  57. Sanz-Cobena A, García-Marco S, Quemada M, Gabriel JL, Almendros P, Vallejo A (2014) Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci Total Environ 466–467:164–174. doi:10.1016/j.scitotenv.2013.07.023
  58. Schipanski M, Barbercheck M, Douglas MR, Finney DM, Haider K, Kaye JP, Kemanian AR, Mortensen DA, Ryan MR, Tooker J, White CM (2014) A conceptual framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric Syst 125:12–22. doi:10.1016/j.agsy.2013.11.004 CrossRefGoogle Scholar
  59. Shapiro CA, Wortman CS, Walters DT (2008) Fertilizer recommendations for corn. University of Nebraska-Lincoln Extension Publication EC117. Accessed 10 June 2016
  60. Shortle J, Abler D, Blumsack S, Britson A, Fang K, Kemanian A, Knight P, McDill M, Najjar R, Nassry M, Ready R, Ross A, Rydzik M, Shen C, Wang S, Wardrop D, Yetter S (2015) Pennsylvania climate impacts assessment update. Pennsylvania Department of Environmental Protection publication 2700-BK-DEP4494. Accessed 10 June 2016
  61. Siebert S, Portmann FT, Döll P (2010) Global patterns of cropland use intensity. Remote Sens 2:1625–1643. doi:10.3390/rs2071625 CrossRefGoogle Scholar
  62. Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob Chang Biol 10:155–160. doi:10.1111/j.1529-8817.2003.00730.x CrossRefGoogle Scholar
  63. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds)], Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  64. Soldevilla M, Gabriel JL, Lizaso J, Quemada M (2014) Initializing the DSSAT-CENTURY model: inverse calibration of carbon pools from apparent soil N mineralization. In: The nitrogen challenge: building a blueprint for nitrogen use efficiency and food security. Marques dos Santos Cordovil CSC (ed.), ISA Press, Lisbon, Portugal pp. 204–205.Google Scholar
  65. Song J (1999) Phenological influences on the albedo of prairie grassland and crop fields. Int J Biometeorol 42:153–157. doi:10.1007/s004840050099 CrossRefGoogle Scholar
  66. Spierre SG, Wake C (2010) Trends in extreme precipitation events for the northeastern United States 1948–2007. Carbon Solutions New England, University of New Hampshire, Durham, NH, USA. Accessed 10 June 2016
  67. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenhouse gas Meas. Manage 1:17–26. doi:10.3763/ghgmm.2010.0007 Google Scholar
  68. Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302. doi:10.1016/S0065-2113(02)79005-6 CrossRefGoogle Scholar
  69. Thorup-Kristensen K, Rasmussen CR (2015) Identifying new deep-rooted plant species suitable as undersown nitrogen catch crops. J Soil Water Conserv 70:399–409. doi:10.2489/jswc.70.6.399 CrossRefGoogle Scholar
  70. Tonitto C, David MB, Drinkwater LE (2006) Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric Ecosyst Environ 112:58–72. doi:10.1016/j.agee.2005.07.003 CrossRefGoogle Scholar
  71. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953 CrossRefGoogle Scholar
  72. Tribouillois H, Cohan JP, Justes E (2015) Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling. Plant Soil 401:347–364. doi:10.1007/s11104-015-2734-8 CrossRefGoogle Scholar
  73. Unger PW, Vigil MF (1998) Cover crop effects on soil water relationships. J Soil Water Conserv 53:200–207Google Scholar
  74. Van Kessel C, Venterea R, Six J, Adviento-Borbe MA, Linquist B, Van Groenigen KJV (2013) Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob Chang Biol 19:33–44. doi:10.1111/j.1365-2486.2012.02779.x
  75. Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629. doi:10.1126/science.1145724 CrossRefPubMedGoogle Scholar
  76. Walthall, CL, Hatfield J, Backlund P, Lengnick L, Marshall E, Walsh M, Adkins S, Aillery M, Ainsworth EA, Ammann C, Anderson CJ, Bartomeus I, Baumgard LH, Booker F, Bradley B, Blumenthal DM, Bunce J, Burkey K, Dabney SM, Delgado JA, Dukes J, Funk A, Garrett K, Glenn M, Grantz DA, Goodrich D, Hu S, Izaurralde RC, Jones RAC, Kim S-H, Leaky ADB, Lewers K, Mader TL, McClung A, Morgan J, Muth DJ, Nearing M, Oosterhuis DM, Ort D, Parmesan C, Pettigrew WT, Polley W, Rader R, Rice C, Rivington M, Rosskopf E, Salas WA, Sollenberger LE, Srygley R, Stöckle C, Takle ES, Timlin D, White JW, Winfree R, Wright-Morton L, Ziska LH (2012) Climate change and agriculture in the United States: effects and adaptation. USDA technical bulletin 1935. USDA, Washington, DC, USAGoogle Scholar
  77. White CM, Finney DM, Kemanian A, Kaye J (2016) A model-data fusion approach for predicting cover crop nitrogen supply to corn. Agron J 108:2527–2540. doi:10.2134/agronj2016.05.0288 CrossRefGoogle Scholar
  78. Zhao K, Jackson RB (2014) Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol Monogr 84:329–353. doi:10.1016/S0065-2113(02)79005-6 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  1. 1.Department of Ecosystem Science and Management, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Agriculture ProductionTechnical University of MadridMadridSpain

Personalised recommendations