Cacao agroforestry systems have higher return on labor compared to full-sun monocultures

  • Laura Armengot
  • Pietro Barbieri
  • Christian Andres
  • Joachim Milz
  • Monika Schneider
Research Article

Abstract

The global demand for cacao has recently increased. To meet this demand, the cultivated area has been expanded in tropical forest areas and production has intensified by replacing traditional agroforestry systems with monocultures. This has led to a loss of biodiversity in cacao-growing areas. More sustainable production systems such as agroforestry and organic managed systems are expected to yield less cacao, but by-crops and premium prices, respectively, might economically compensate for the lower yields. Here, we compared the productivity and the return on labor, that is the return per working day, of four different cacao production systems: agroforestry and monocultures under organic and conventional management. Cacao and by-crop yields, costs, revenues, and labor were registered during the first 5 years after establishment. Results show that cacao yields were, on average, 41% higher in monocultures, but the revenues derived from agroforestry by-crops economically overcompensated for this difference. Indeed, the return on labor across the years was roughly twice as high in the agroforestry systems compared to the monocultures. We found similar cacao yields and return on labor in conventional and organically managed agroforestry systems. However, in the monocultures, cacao yields were 48% lower under organic compared with conventional farming, but the return on labor was similar, mainly due to the higher costs associated to the conventional management. Overall, our findings show that cacao agroforestry systems have higher return on labor.

Keywords

Bolivia Economic analysis Labor demand Long-term experiment Organic farming Theobroma cacao L. 

References

  1. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48. doi:10.18637/jss.v067.i01 CrossRefGoogle Scholar
  2. Cerda R, Deheuvels O, Calvache D (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981. doi:10.1007/s10457-014-9691-8 CrossRefGoogle Scholar
  3. Crowder DW, Reganold JP (2015) Financial competitiveness of organic agriculture on a global scale. Proc Natl Acad Sci U S A 112:7611–7616. doi:10.1073/pnas.1423674112 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Donald P (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18:17–37. doi:10.1111/j.1523-1739.2004.01803.x CrossRefGoogle Scholar
  5. Foley J, DeFries R, Asner G, Barford C et al (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772 CrossRefPubMedGoogle Scholar
  6. Franzen M, Borgerhoff Mulder M (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16:3835–3849. doi:10.1007/s10531-007-9183-5 CrossRefGoogle Scholar
  7. Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869. doi:10.1111/j.1461-0248.2010.01481.x CrossRefPubMedGoogle Scholar
  8. Gockowski J, Afari-Sefa V, Sarpong DB, Osei-Asare YB, Agyeman NF (2013) Improving the productivity and income of Ghanaian cocoa farmers while maintaining environmental services: what role for certification? Int J Agric Sustain 11:331–346. doi:10.1080/14735903.2013.772714 CrossRefGoogle Scholar
  9. Jansen K (2000) Labour, livelihoods and the quality of life in organic agriculture in Europe. Biol Agric Hortic 17:247–278. doi:10.1080/01448765.2000.9754845 CrossRefGoogle Scholar
  10. Juhrbandt J, Duwe T, Barkmann J, Gerold G, Marggraf R (2010) Structure and management of cocoa agroforestry systems in Central Sulawesi across an intensification gradient. In: Tscharntke T et al (eds) Tropical rainforests and agroforests under global change. Springer-Verlag, Berlin Heidelberg, pp. 115–140. doi:10.1007/978-3-642-00493-3_5 CrossRefGoogle Scholar
  11. Klein AM, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014. doi:10.1046/j.1523-1739.2002.00499.x CrossRefGoogle Scholar
  12. Koko LK, Snoeck D, Lekadou TT, Assiri AA (2013) Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Cote d’Ivoire. Agrofor Syst 87:1043–1052. doi:10.1007/s10457-013-9619-8
  13. Kuznetsova A, Brockhoff PB, Bojesen Christensen RB (2015) lmerTest: tests in linear mixed effects models. R package version 2.0–29. http://cran.r-project.org/package=lmerTest. Accessed 7 March 2015
  14. Milestad R, Darnhofer I (2008) Building farm resilience: the prospects and challenges of organic farming. J Sustain Agric 22:81–97. doi:10.1300/J064v22n03_09 CrossRefGoogle Scholar
  15. Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc B Biol Sci 365:3709–3718. doi:10.1098/rstb.2010.0273 CrossRefGoogle Scholar
  16. Perfecto I, Vandermeer J, Mas A, Pinto LS (2005) Biodiversity, yield, and shade coffee certification. Ecol Econ 54:435–446. doi:10.1016/j.ecolecon.2004.10.009 CrossRefGoogle Scholar
  17. Pumariño L, Sileshi GW, Gripenberg S, Kaartinen R, Barrios E, Muchane MN, Midega C, Jonsson M (2015) Effects of agroforestry on pest, disease and weed control: a meta-analysis. Basic Appl Ecol 16:573–582. doi:10.1016/j.baae.2015.08.006 CrossRefGoogle Scholar
  18. R Core Team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/. Accessed 7 March 2015
  19. Ramirez O, Somarriba E, Ludewigs T, Ferreira P (2001) Financial returns, stability and risk of cacao-plantation-agroforestry systems in Central America. Agrofor Syst 2:141–154. doi:10.1023/A:1010655304724 CrossRefGoogle Scholar
  20. Rapidel B, Ripoche A, Allinne C, Metay A, Deheuvels O, Lamanda N, Blazy JM, Valdés-Gómez H, Gary C (2015) Analysis of ecosystem services trade-offs to design agroecosystems with perennial crops. Agron Sustain Dev 35:1373–1390. doi:10.1007/s13593-015-0317-y CrossRefGoogle Scholar
  21. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303. doi:10.1007/s13593-011-0022-4 CrossRefGoogle Scholar
  22. Schneider M, Andres C, Trujillo G, Alcon F, Amurrios P, Perez E, Weibel F, Milz J (2016) Cocoa and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Expl Agric. doi:10.1017/S0014479716000417 Google Scholar
  23. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232. doi:10.1038/nature11069 CrossRefPubMedGoogle Scholar
  24. Siebert SF (2002) From shade-to sun-grow perrennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodivers Conserv 11:1889–1902. doi:10.1023/A:1020804611740 CrossRefGoogle Scholar
  25. The World Bank (2016) Global monitoring report 2015/2016. Development goals in an era of demogrpahic change. Washington DC. http://www.worldbank.org/en/publication/global-monitoring-report.
  26. Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956. doi:10.1007/s10457-014-9762-x CrossRefGoogle Scholar
  27. Vieira ICG, Toledo PM, Silva JMC, Higuchi H (2008) Deforestation and threats to the biodiversity of Amazonia. Brazilian J Biol 68:949–956. doi:10.1590/S1519-69842008000500004 CrossRefGoogle Scholar
  28. Willer H, Lernoud J (2015) The world of organic agriculture. Statistics and emerging trends 2015. FiBL-IFOAM Report, Research Institue of Organic Agriculture (FiBL), Frick, and IFOAM - Organics International BonnGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Research Institute of Organic AgricultureFrickSwitzerland
  2. 2.INRA, UMR 1391 ISPAVillenave d’OrnonFrance
  3. 3.Sustainable Agroecosystems Group, Institute of Agricultural Sciences, Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  4. 4.Ecotop ConsultLa PazBolivia

Personalised recommendations