A resistant pepper used as a trap cover crop in vegetable production strongly decreases root-knot nematode infestation in soil

  • Mireille Navarrete
  • Caroline Djian-Caporalino
  • Thierrry Mateille
  • Alain Palloix
  • Anne-Marie Sage-Palloix
  • Amélie Lefèvre
  • Ariane Fazari
  • Nathalie Marteu
  • Johannes Tavoillot
  • Arnaud Dufils
  • Claudine Furnion
  • Laure Pares
  • Isabelle Forest
Research Article
Part of the following topical collections:
  1. Pest control

Abstract

Root-knot nematodes are causing serious economic losses of vegetable production. Actual agroecological control solutions are not effective enough to control this pest or are difficult to implement in farms. There is little knowledge on the use of crops to trap nematodes in protected cultivation systems. Therefore, we tested a resistant pepper as a trap crop for root-knot nematodes over 4 years in a commercial farm and an experimental station in Southern France. The effects of pepper trap crop on plant damages and soil infestation were compared with a sorghum cover crop. We also surveyed 28 local vegetable farmers for their interest concerning the possible use of the pepper trap crop. Our results show that nematode infestation of the soil decreased by 99 and 80 % after the first and second implementation of the trap crop. The gall index measured on Swiss chard decreased from 2.5 to less than 1 after 4 years. Respectively, 21 and 36 % of farmers found the cropping system completely and partially acceptable. The most interested farmers were those having sufficient labor and available land in summer. Farmer criticisms were higher nursery costs and planting duration, versus sorghum. Overall, this is the first design of a cropping system using a resistant cultivar as a dead-end trap crop for root-knot nematodes. The process used, moving from a genetic construct to agronomic innovation through an interdisciplinary and participatory approach, holds promise for scientists seeking new integrated pest management approaches to increase the sustainability of agriculture.

Keywords

IPM Vegetable Cropping system Design Experiment Protected cultivation Trap crop Genetic resistance Agroecology Innovation Acceptability to farmers Meloidogyne 

References

  1. Abawi GS, Widmer TL (2000) Impact of soil management practices on soil-borne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47. doi:10.1016/S0929-1393(00)00070-6 CrossRefGoogle Scholar
  2. Bleve-Zacheo T, Bongiovanni M, Melillo MT, Castagnone-Sereno P (1998) The pepper resistance genes Me1 et Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Sci 133:79–90. doi:10.1016/S0168-9452(98)00021-1 CrossRefGoogle Scholar
  3. Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262. doi:10.1016/j.cropro.2011.04.016 CrossRefGoogle Scholar
  4. Collange B, Navarrete M, Montfort F, Mateille T, Tavoillot J, Martiny B, Tchamitchian M (2014) Alternative cropping systems can have contrasting effects on various soil-borne diseases: relevance of a systemic analysis in vegetable cropping systems. Crop Prot 55:7–15. doi:10.1016/j.cropro.2013.10.002 CrossRefGoogle Scholar
  5. Crestin JM, Vannier S (2007) Les engrais verts en maraîchage. Ed. Aprel / CA Vaucluse, 16pGoogle Scholar
  6. Cuadra R, Cruz X, Fajardo JL (2000) Cultivos de ciclo corto Como plantas trampas Para el control del nematodo agallador. Nematropica 30:241–246Google Scholar
  7. Dandurand LM, Brown CR, Knudsen GR, Filip CJ, Gajjar (2013) Potential of Solanum sisymbriifolium as a trap crop for the control of the pale cyst nematode Globodera pallida. J Nematol 45:286–286Google Scholar
  8. Djian-Caporalino C (2012) Root-knot nematodes (Meloidogyne spp.), a growing problem in French vegetable crops. EPPO Bulletin 42:127–137CrossRefGoogle Scholar
  9. Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubeze A, Palloix A, Dalmasso A, Abad P (1999) Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.). Theor Appl Genet 99:496–502. doi:10.1007/s001220051262 CrossRefPubMedGoogle Scholar
  10. Djian-Caporalino C, Bourdy G, Cayrol JC (2005) Nematicidal and nematode-resistant plants. In: Regnault-Roger C, Philogène B, Vincent C (eds) Biopesticides of plant origin. Tec & Doc, London, Paris, New York, pp. 173–224Google Scholar
  11. Djian-Caporalino C, Molinari S, Palloix A, Ciancio A, Fazari A, Marteu N, Ris N, Castagnone-Sereno P (2011) The reproductive potential of the root-knot nematode Meloidogyne Incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Eur J Plant Pathol 131:431–440. doi:10.1007/s10658-011-9820-4 CrossRefGoogle Scholar
  12. Djian-Caporalino C, Palloix A, Fazari A, Marteu N, Barbary A, Abad P, Sage-Palloix AM, Mateille T, Risso S, Lanza R, Taussig C, Castagnone-Sereno P (2014) Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biol 14:53–66. doi:10.1186/1471-2229-14-53 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Furnion C (2014) Assessing the acceptability of alternative cropping systems limiting the pressure of root-knot nematodes: a case study with market gardeners of South-Eastern France. Engineer dissertation, Wageninen University / ISARA LyonGoogle Scholar
  14. Hare WW (1957) Inheritance of resistance to root-knot nematodes in pepper. Phytopathology 47:455–459Google Scholar
  15. Hendy H, Dalmasso A, Cardin MC (1985) Differences in resistant Capsicum annuum attacked by different Meloidogyne species. Nematologica 31:72–78CrossRefGoogle Scholar
  16. Hooks CRR, Wang KH, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320CrossRefGoogle Scholar
  17. McSorley R, Ozores-Hampton M, Stansly PA, Conner JM (1999) Nematode management, soil fertility and yield in organic vegetable production. Nematropica 29:205–213Google Scholar
  18. Melakeberhan H, Kravchenko A, Dahl J, Warncke D (2010) Effects of soil types and Meloidogyne hapla on the multi-purpose uses of arugula (Eruca sativa). Nematology 12:115–120CrossRefGoogle Scholar
  19. Milligan S, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319CrossRefPubMedPubMedCentralGoogle Scholar
  20. Navarrete M, Le Bail M, Papy F, Bressoud F, Tordjman S (2006) Combining leeway on farm and supply basin scales to promote technical innovations in lettuce production. Agron Sustain Dev 26:77–87. doi:10.1051/agro:2005062 CrossRefGoogle Scholar
  21. Navarrete M, Tchamitchian M, Aissa-Madani C, Collange B, Taussig C (2010) Elaborating innovative solutions with experts using a multicriteria evaluation tool the case of soil-borne disease control in market-gardening cropping systems. International symposium “Innovation and Sustainable Development in Agriculture and Food”, Montpellier, June 28 / July 1/2010, http://hal.archives-ouvertes.fr/hal-00512273/fr/
  22. Navarrete M, Dupré L, Lamine C (2015) Crop management, labour organization, and marketing: three key issues for improving sustainability in organic vegetable farming. Int J Agric Sustain 13:257–274. doi:10.1080/14735903.2014.959341 CrossRefGoogle Scholar
  23. Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C (2005) Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum L. Phytopathology 95:158–165. doi:10.1094/PHYTO-95-0158 CrossRefPubMedGoogle Scholar
  24. Ploeg AT, Maris PC (1999) Effects of temperature on the duration of the life cycle of a Meloidogyne Incognita population. Nematology 1:389–393. doi:10.1163/156854199508388 CrossRefGoogle Scholar
  25. Prot JC, Van Gundy SD (1981) Effect of soil texture and the clay component on migration of Meloidogyne Incognita second stage juveniles. J Nematol 13:213–219PubMedPubMedCentralGoogle Scholar
  26. Roberts PA, Matthews WC, Ehlers JD (2005) Root-knot nematode resistant cowpea cover crop in tomato production systems. Agron J 97:1626–1635CrossRefGoogle Scholar
  27. Rodríguez-Kábana R, Morgan-Jones G, Chet I (1987) Biological-control of nematodes: soil amendments and microbial antagonists. Plant Soil 100:237–247CrossRefGoogle Scholar
  28. Sattler C, Nagel UJ (2010) Factors affecting farmers’ acceptance of conservation measures. A case study from North-Eastern Germany. Land Use Pol 27:70–77. doi:10.1016/j.landusepol.2008.02.002 CrossRefGoogle Scholar
  29. Schut M, Rodenburg J, Klerkx L, van Ast A, Bastiaans L (2014) Systems approaches to innovation in crop protection. A systematic literature review. Crop Prot 56:98–108. doi:10.1016/j.cropro.2013.11.017 CrossRefGoogle Scholar
  30. Seinhorst JW (1962) Modifications of the elutriation method for extracting nematodes from soil. Nematologica 8:117–128CrossRefGoogle Scholar
  31. Sikora RA, Fernandez E (2005) Nematode parasites to vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB international, Wallington, pp. 319–392CrossRefGoogle Scholar
  32. Thies JA (2011) Virulence of Meloidogyne Incognita to expression of N gene in pepper. J Nematol 43:90–94PubMedPubMedCentralGoogle Scholar
  33. Wang KH, McSorley R, Gallaher RN (2003) Host status and amendment effects of cowpea on Meloidogyne Incognita in vegetable cropping systems. Nematropica 33:215–224Google Scholar
  34. Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, Noling JW (2010) Managing nematodes without methyl bromide. Annu Rev Phytopathol 48:311–328. doi:10.1146/annurev-phyto-073009-11442 CrossRefPubMedGoogle Scholar
  35. Zeck WM (1971) A rating scheme for field evaluation of root-knot nematode infestations. Pflanzenschutz-Nachrichten 24:141–144Google Scholar

Copyright information

© INRA and Springer-Verlag France 2016

Authors and Affiliations

  • Mireille Navarrete
    • 1
  • Caroline Djian-Caporalino
    • 2
  • Thierrry Mateille
    • 3
  • Alain Palloix
    • 4
  • Anne-Marie Sage-Palloix
    • 4
  • Amélie Lefèvre
    • 5
  • Ariane Fazari
    • 2
  • Nathalie Marteu
    • 2
  • Johannes Tavoillot
    • 3
  • Arnaud Dufils
    • 1
  • Claudine Furnion
    • 1
  • Laure Pares
    • 5
  • Isabelle Forest
    • 6
  1. 1.INRA UR767, EcodéveloppementAvignon cedex 09France
  2. 2.INRA UMR 1355, Institut Sophia AgrobiotechSophiaFrance
  3. 3.IRD UMR CBGPMontferrier Sur LezFrance
  4. 4.INRA UR1052, Génétique et Amélioration des Fruits et LégumesMontfavet Cedex 09France
  5. 5.INRA UE0411, Domaine Expérimental d’Alénya RoussillonAlényaFrance
  6. 6.Chambre d’Agriculture du VarHyèresFrance

Personalised recommendations