Agronomy for Sustainable Development

, Volume 35, Issue 2, pp 649–656 | Cite as

Homeopathic drugs to control red rot disease in sisal plants

  • Erasto V. S. Gama
  • Franceli Silva
  • Ivanete Santos
  • Ricardo Malheiro
  • Ana Cristina Fermino Soares
  • José Alberto Pereira
  • Cintia Armond
Research Article


Sisal—Agave sisalana Perrine ex. Engelm—is a key economical and social crop in the semi-arid region of Brazil, especially in the Bahia state. Sisal is severely affected by Aspergillus niger Thieg, the causal agent of sisal red rot. Currently, existing control strategies are fruitless. Here, we tested different homeopathic drugs Carbo vegetabilis, Ferrum metallicum, Natrum muriaticum, phosphorus and sulphur at centesimal Hahnemannian (CH) dynamizations, of 3CH, 5CH, 7CH, 9CH and 12CH, on Aspergillus niger. We measured in vitro growth inhibition, sporulation and germination of Aspergillus niger during 12 days. We assessed in planta Aspergillus niger incidence and disease severity. Our results show that homeopathic drugs inhibited Aspergillus niger growth in vitro, in a dynamization-dependent way. Natrum muriaticum 5CH revealed the higher inhibition of 66 %, whereas sulphur 5CH yielded the lowest inhibition of 6.4 %. Spore production was stimulated using all homeopathic drugs at all dynamization levels, whereas spore germination was reduced. In planta assays revealed different results from in vitro assays, corroborating that in planta and in vitro effectiveness is different according to the homeopathic drugs applied. Here, disease incidence was not reduced significantly, but disease severity was lower in treated plants, of 27.8 % using Ferrum metallicum 9CH than in control trials, of 73.6 %. Overall, our findings suggest that homeopathic drugs could be a good strategy to control Aspergillus niger incidence in sisal plants.


Sisal Sisal red rot Homeopathy Dynamizations 



This study was supported by grants from the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” through the Project “Tecnologia Social na Inclusão Sócio Produtiva dos Agricultores Familiares da Cultura do Sisal”.


  1. Bee S, Atri DC (2013) Inhibitory effect of homeopathic drugs on the production of aflatoxin B1 in groundnuts. Int J Pharm Pharm Sci 5:73–75Google Scholar
  2. Betti L, Trebbi G, Majewsky V, Schen C, Shah-Rossi D, Jäger T, Baumgartner S (2009) Use of homeopathic preparations in phytopathological models and in field trials: a critical review. Homeopathy 98:244–266. doi: 10.1016/j.homp.2009.09.008 CrossRefPubMedGoogle Scholar
  3. Betti L, Trebbi G, Olioso D, Marzoto M, Bellavite P (2013) Basic research in homeopathy and ultra-high dilutions: what progress is being made? Homeopathy 102:151–154. doi: 10.1016/j.homp.2013.01.002 CrossRefPubMedGoogle Scholar
  4. Bonato CM, Viotto EG, Hara JH, Reis B, Myzote AT, Cisneiros JA (2006) The application of the homeopathic drugs Lachesis and Isotherarapic Virus in the growth and infection control for SCMV in sorghum Moench) (Sorghum bicolor (L.) Moench). Cultura Homeopática Arquivos da Escola de Homeopatia 16:51Google Scholar
  5. Carneiro SMTPG, Romano EDB, Pignoni E, Teixeira MZ, Vasconcelos MEC, Gomes JC (2010) Effect of biotherapic of Alternaria solani on the early blight of tomato-plant and the in vitro development of the fungus. Int J High Dilution Res 33:147–155Google Scholar
  6. Casali VWD, Andrade FMC, Duarte ESM (2009) Acologia de Altas Diluições. Resultados científicos e experiências sobre o uso de preparados homeopáticos em sistemas vivos. Imprensa Universitária da Universidade Federal de Viçosa, ViçosaGoogle Scholar
  7. Chaurasia JP, Vyas KM (1997) In vivo evaluation of some homoeopathic drugs against betelvine Phytophthora disease. Indian Phytopathol 50:542–547Google Scholar
  8. Coutinho WM, Suassuna ND, Luz CM, Suinaga FA, Silva ORRF (2006) Bole rot of sisal caused by Aspergillus niger in Brazil. Fitopatol Bras 31:605. doi: 10.1590/S0100-41582006000600014 CrossRefGoogle Scholar
  9. Damveld RA, Arentshorst M, Franken A, vanKuyk PA, Klis FM, van den Hondel CAMJJ, Ram AFJ (2005) The Aspergillus niger MADS-box transcription factor RImA is required for cell wall reinforcement in response to cell wall stress. Mol Microbiol 58:305–319. doi: 10.1111/j-1365-2958.2005.04827.x CrossRefPubMedGoogle Scholar
  10. FAO (2014) FAO STAT database. Accessed 24 Mar 2014
  11. FHB (2011) Farmacopéia Homeopática Brasileira, 3rd edn. BrasíliaGoogle Scholar
  12. Gutiérrez A, Rodríguez IM, Río JC (2008) Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers. Ind Crop Prod 28:81–87. doi: 10.1016/j.indcrop.2008.01.008 CrossRefGoogle Scholar
  13. Hahnemann (1842) Organon of medicine. Translated from German 6th Edition by Castro C, Filho R, Curi K (1995) 2nd Brazilian Edition. São Paulo. GEHSP, Benoit MureGoogle Scholar
  14. IBGE SIDRA (2014) Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática. Accessed 27 Mar 2014
  15. Javed MT, Khan MA, Ehetisham-ul-Haq M, Atiq M (2013) Biological management of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum through plant extracts and homeopathic products. Res J Plant Dis Pathol 1:1–10Google Scholar
  16. Kehri KH, Chandra S (1986) Control of Botryodiplodia rot of guava with a homeopathic drug. Natl Acad Sci Lett 9:301–302Google Scholar
  17. Khanna KK (1993) Suppression of Fusarium oxysporum Schlecht a pathogen causing seedling blight and foot rot of wheat, with homoeopathic drugs. Natl Acad Sci Lett 63:353–360Google Scholar
  18. Khanna KK, Chandra S (1978) A homeopathic drug controls mango fruit rot caused by Pestalotia magnifaere Henn. Experientia 34:1167–1168CrossRefGoogle Scholar
  19. Khanna KK, Khanna KK, Chandra S (1989) Effect of homoeopathic drugs on seed mycoflora of wheat. Natl Acad Sci Lett 12:39–41Google Scholar
  20. Kolisko E, Kolisko L (1978) Agriculture of tomorrow. Acorn Press, BournemouthGoogle Scholar
  21. McKinney HH (1925) Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J Agric Res 26:195–218Google Scholar
  22. Mishra N (1983) Inhibition of Aspergillus niger van Tiegh. By homeopathic drugs causing deterioration of coriander and cumin seeds in storage. Natl Acad Sci Lett 6:139–141Google Scholar
  23. Ram AFJ, Arentshorst M, Damveld RA, vanKuyk PA, Klis FM, van den Hondel CAMJJ (2004) The cell wall stress response in Aspergillus niger involves increased expression of the glutamine:fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology 150:3315–3326CrossRefPubMedGoogle Scholar
  24. Russell AD (2003) Similarities and differences in the response of microorganisms to biocides. J Antimicrob Chemother 52:750–763. doi: 10.1093/jac/dkg422 CrossRefPubMedGoogle Scholar
  25. Sá JO (2009) Patogênese de Aspergillus niger e biocontrole da podridão vermelha do sisal por Trichoderma spp. Dissertation, Universidade Federal do Recôncavo da BahiaGoogle Scholar
  26. Shah-Rossi D, Heusser P, Baumgartner S (2009) Homeopathic treatment of Arabidopsis thaliana plants infected with Pseudomonas syringae. Sci World J 9:323–330. doi: 10.1100/tsw.2009.38 CrossRefGoogle Scholar
  27. Sinha KK, Singh P (1983) Homeopathic drugs—inhibitors of growth and aflatoxin production by Aspergillus parasiticus. Indian Phytopathol 36:356–357Google Scholar
  28. Toledo MV, Stangarlin JR, Bonato CM (2011) Homeopathy for the control of plant pathogens. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, vol 2. Formatex Research Center, Badajoz, pp 1063–1067Google Scholar
  29. Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and intervention. Am J Clin Nutr 80:1106–1122PubMedGoogle Scholar
  30. Wyss E, Tamm L, Siebenwirth J, Baumgartner S (2010) Homeopathic preparations to control the rosy apple aphid (Dysaphis plantaginea Pass.). Sci World J 10:38–48. doi: 10.1100/tsw.2010.12 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Erasto V. S. Gama
    • 1
  • Franceli Silva
    • 1
  • Ivanete Santos
    • 1
  • Ricardo Malheiro
    • 2
  • Ana Cristina Fermino Soares
    • 1
  • José Alberto Pereira
    • 2
  • Cintia Armond
    • 1
  1. 1.Centre for Agricultural, Environmental and Biological SciencesFederal University of Recôncavo da Bahia/UFRB, University CampusCruz das AlmasBrazil
  2. 2.Mountain Research Centre (CIMO)/School of AgriculturePolytechnic Institute of Bragança, Campus de Sta ApolóniaBragançaPortugal

Personalised recommendations