Agronomy for Sustainable Development

, Volume 35, Issue 2, pp 667–678 | Cite as

Biochar organic fertilizers from natural resources as substitute for mineral fertilizers

Research Article

Abstract

Biochars are new, carbon-rich materials that could sequester carbon in soils improve soil properties and agronomic performance, inspired by investigations of Terra Preta in Amazonia. However, recent studies showed contrasting performance of biochar. In most studies, only pure biochar was used in tropical environments. Actually, there is little knowledge on the performance of biochar in combination with fertilizers under temperate climate. Therefore, we conducted an experiment under field conditions on a sandy Cambisol near Gorleben in Northern Germany. Ten different treatments were established in 72-m2 plots and fivefold field replicates. Treatments included mineral fertilizer, biogas digestate, microbially inoculated biogas digestate and compost either alone or in combination with 1 to 40 Mg ha−1 of biochar. Soil samples were taken after fertilizer application and maize harvest. Our results show that the biochar addition of 1 Mg ha−1 to mineral fertilizer increased maize yield by 20 %, and biochar addition to biogas digestate increased maize yield by 30 % in comparison to the corresponding fertilizers without biochar. The addition of 10 Mg ha−1 biochar to compost increased maize yield by 26 % compared to pure compost. The addition of 40 Mg ha−1 biochar to biogas digestate increased maize yield by 42 % but reduced maize yield by 50 % when biogas digestate was fermented together with biochar. Biochar-fertilizer combinations increased K, Mg and Zn and reduced Na, Cu, Ni and Cd uptake into maize. Overall, our findings demonstrate that biochar-fertilizer combinations have a better performance than pure fertilizers, in terms of yield and plant nutrition. Therefore, an immediate substitution of mineral fertilizers is possible to close regional nutrient cycles.

Keywords

Water holding capacity Plant nutrition Mineral fertilizer Biogas digestate Compost Effective microorganisms Central Europe Microbial inoculation Temperate climate conditions Biochar organic fertilizer interaction 

Notes

Acknowledgments

We acknowledge the Federal Ministry of Education and Research (BMBF) for financial support within the ClimaCarbo project (No. 01LY1110B). We also thank the hardworking helpers who conducted this field trial and collected samples and data regardless of weather conditions: Thomas Chudy, Daniel Habenicht, Graf Fried von Bernstorff, Jens Schneeweiß, Hardy Schulz, Katharina Winter, Daniel Fischer, Katharina Karnstedt, Bianca Karnstedt, Steven Polifka, Tobias Bromm, Marianne Benensch, Susanne Both and many other involved students and technical assistants.

References

  1. Amoruwa GM, Ogunlela VB, Ologunde OO (1987) Agronomic performance and nutrient concentration of Maize (Zea mays L.) as influenced by nitrogen fertilization and plant density. J Agron Crop Sci 159:226–231. doi:10.1111/j.1439-037X.1987.tb00093.x CrossRefGoogle Scholar
  2. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18CrossRefGoogle Scholar
  3. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Sci Soc Am J 70:448. doi:10.2136/sssaj2005.0096 CrossRefGoogle Scholar
  4. Duggan JC, Wiles CC (1976) Effect of municipal compost and nitrogen fertilizer on selected soils and plants. Compos Sci 17:24–31Google Scholar
  5. Fischer D, Glaser B (2012) Synergisms between compost and biochar for sustainable soil amelioration. In: Sunil K, Bharti A (eds) Management of organic waste. InTech, Rijeka, pp 167–198Google Scholar
  6. Gabrielle B, Da-Silveira J, Houot S, Michelin J (2005) Field-scale modelling of carbon and nitrogen dynamics in soils amended with urban waste composts. Agric Ecosyst Environ 110:289–299. doi:10.1016/j.agee.2005.04.015 CrossRefGoogle Scholar
  7. Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51. doi:10.1016/j.gca.2010.11.029 CrossRefGoogle Scholar
  8. Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678. doi:10.1016/S0146-6380(00)00044-9 CrossRefGoogle Scholar
  9. Glaser B, Lehmann J, Zech W, Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4 CrossRefGoogle Scholar
  10. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. doi:10.1016/j.jtemb.2005.02.010 CrossRefPubMedGoogle Scholar
  11. Jeffrey S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. doi:10.1016/j.agee.2011.08.015 CrossRefGoogle Scholar
  12. Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi:10.1016/j.soilbio.2011.10.012 CrossRefGoogle Scholar
  13. Kammann C, Linsel S, Goeßling J, Kyoro H (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Wild and on soil-plant relations. Plant Soil 345:195–210. doi:10.1007/s11104-011-0771-5 CrossRefGoogle Scholar
  14. Karhu K, Mattila T, Bergstroem I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313. doi:10.1016/j.agee.2010.12.005 CrossRefGoogle Scholar
  15. Knowles OA, Robinson BH, Contangelo A, Clucas L (2011) Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci Total Environ 409:3206–3210. doi:10.1016/j.scitotenv.2011.05.011 CrossRefPubMedGoogle Scholar
  16. Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173. doi:10.2136/sssaj2008.0232 CrossRefGoogle Scholar
  17. Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442. doi:10.1016/j.geoderma.2010.05.012 CrossRefGoogle Scholar
  18. Lavalle C, Micale F, Houston TD, Camia A, Hiederer R, Lazar C, Conte C, Amatulli G, Genovese G (2009) Climate change in Europe. 3. Impact on agriculture and forestry—a review. Agron Sustain Dev 29:433–446. doi:10.1051/agro/2008068 CrossRefGoogle Scholar
  19. Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357. doi:10.1023/A:1022833116184 CrossRefGoogle Scholar
  20. Liu J, Schulz H, Brandl S, Miethke H, Huwe B, Glaser B (2012) Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci 175:698–707. doi:10.1002/jpln.201100172 CrossRefGoogle Scholar
  21. Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L et al (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594. doi:10.1007/s11104-013-1806-x CrossRefGoogle Scholar
  22. Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna Oxisol. Plant Soil 333:117–128. doi:10.1007/s11104-010-0327-0 CrossRefGoogle Scholar
  23. Mays DA, Terman GL, Duggan JC (1973) Municipal compost: effects on crop yields and soil properties. J Environ Qual 2:89. doi:10.2134/jeq1973.00472425000200010011x CrossRefGoogle Scholar
  24. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Government Printing Office Washington, DC USDA Circular 1–19Google Scholar
  25. Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451. doi:10.1007/s11104-011-0948-y CrossRefGoogle Scholar
  26. Paul EA (ed) (2007) Soil microbiology, ecology and biochemistry, 3rd edn. Academic, San DiegoGoogle Scholar
  27. Richter C, Piepho H, Thöni H (2009) The ‘latin rectangle’—its layout, randomisation, and analysis combined with a revision of the commonly used German terminology. Pflanzenbauwissenschaften 13:1–14Google Scholar
  28. Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175:410–422. doi:10.1002/jpln.201100143 CrossRefGoogle Scholar
  29. Shiralipour A, McConnell DB, Smith WH (1992) Physical and chemical properties of soils as affected by municipal solid waste compost application. Biomass Bioenergy 3:261–266. doi:10.1016/0961-9534(92)90030-T CrossRefGoogle Scholar
  30. Trueby P, Aldinger E (1989) Eine Methode zur Bestimmung austauschbarer Kationen in Waldböden. Z Pflanzenernähr Bodenkd 152:301–306. doi:10.1002/jpln.19891520307 CrossRefGoogle Scholar
  31. Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441. doi:10.1016/j.jhazmat.2011.03.063 CrossRefPubMedGoogle Scholar
  32. Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212. doi:10.1111/j.1475-2743.2011.00340.x CrossRefGoogle Scholar
  33. Van Zwieten L, Kimber S, Downie A, Chan KY, Cowie A, Wainberg R, Morris S (2007) Papermill char: benefits to soil health and plant production. Proceedings of the Conference of the International Agrichar Initiative, 30 April–2 May 2007, Terrigal, AustraliaGoogle Scholar
  34. van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. doi:10.1007/s11104-009-0050-x CrossRefGoogle Scholar
  35. Walker DJ, Bernal MP (2008) The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresour Technol 99:396–520. doi:10.1016/j.biortech.2006.12.006 CrossRefPubMedGoogle Scholar
  36. Weber J, Karczewska A, Drozd J, Licznar M, Licznar S, Jamroz E, Kocowicz A (2007) Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol Biochem 39:1294–1302. doi:10.1016/j.soilbio.2006.12.005 CrossRefGoogle Scholar
  37. Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 59:264–278. doi:10.1016/j.biombioe.2013.08.026 CrossRefGoogle Scholar
  38. Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495. doi:10.1111/j.1747-0765.2006.00065.x532 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Soil BiogeochemistryMartin-Luther-University Halle-WittenbergHalleGermany
  2. 2.WaddeweitzGermany
  3. 3.Ithaka InstituteArbazSwitzerland
  4. 4.PYREG GmbHDörthGermany

Personalised recommendations