Skip to main content

Advertisement

Log in

A new method to assess farming system evolution at the landscape scale

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Agriculture provides many ecosystem services such as food, fiber, clean water, and sequestration of carbon. The efficiency of such ecosystem services depends on crop composition and farmer decisions. Current knowledge on landscape changes is focused on crop allocation process at farm scale and rotations at field scale, whereas the impact of farmer decisions on the choice of crop acreages is poorly known. Therefore, we have built a method to assess the evolution of farm crop acreages in time and space and to identify factors ruling agricultural landscape changes. We use a dynamic typology, which is a multi-year classification of farmers. The seven steps of the method include three steps on farm typology, three steps on landscape changes, and then one step on change factors. We applied the method on 3,591 farms in Guadeloupe. Eight farm types were distinguished according to crop acreages. Our results show evidence of a diversification of 111 sugarcane growers toward production of vegetables and fruits. Spatial analysis revealed a relationship between diversification and water availability. Our method could be used to measure ecosystem services or disservices associated with changes in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agreste (2011) Guadeloupe-Mémento Régionale-Résultats 2011. http://www.agreste.agriculture.gouv.fr/IMG/pdf/D97113C01.pdf. Accessed 26 March 2014

  • Aubry C, Papy F, Capillon A (1998) Modelling decision-making processes for annual crop management. Agric Syst 56(1):45–65. doi:10.1016/s0308-521x(97)00034-6

    Article  Google Scholar 

  • Benoît M, Le Ber F, Mari J-F (2001) Recherche des successions de cultures et de leurs évolutions: analyse par HMM des données Ter-Uti en Lorraine. La Stat Agric 31:23–30

    Google Scholar 

  • Benoît M, Rizzo D, Marraccini E, Moonen A, Galli M, Lardon S, Rapey H, Thenail C, Bonari E (2012) Landscape agronomy: a new field for addressing agricultural landscape dynamics. Landsc Ecol 27(10):1385–1394. doi:10.1007/s10980-012-9802-8

    Article  Google Scholar 

  • Blazy J-M, Ozier-Lafontaine H, Dore T, Thomas A, Wery J (2009) A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe. Agric Syst 101(1–2):30–41. doi:10.1016/j.agsy.2009.02.004

    Article  Google Scholar 

  • Bullock DG (1992) Crop-rotation. Crit Rev Plant Sci 11(4):309–326. doi:10.1080/07352689209382349

    Article  Google Scholar 

  • Cabidoche Y-M, Cattan P, Dorel M, Paillat J-M (2002) Intensification agricole et risque de pollution azotée des ressources en eau dans les départements français d’outre-mer insulaires: surveiller en priorité les pratiques agricoles dans les périmètres irrigués. Atelier du PCSI (Programme Commun Systèmes Irrigués) sur une Maîtrise des Impacts Environnementaux de l’Irrigation. hal.inria.fr/docs/00/18/07/27/PDF/Cabidoche.pdf. Accessed 26 March 2004

  • Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin C, Massat F, Sansoulet J (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut 157:1697–1705. doi:10.1016/j.envpol.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  • Castellazzi MS, Perry JN, Colbach N, Monod H, Adamczyk K, Viaud V, Conrad KF (2007) New measures and tests of temporal and spatial pattern of crops in agricultural landscapes. Agric Ecosyst Environ 118(1–4):339–349. doi:10.1016/j.agee.2006.06.003

  • Castellazzi MS, Matthews J, Angevin F, Sausse C, Wood GA, Burgess PJ, Brown I, Conrad KF, Perry JN (2010) Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Environ Model Softw 25(12):1881–1889. doi:10.1016/j.envsoft.2010.04.006

    Article  Google Scholar 

  • Chopin P, Blazy J-M (2013) Assessment of regional variability in crop yields with spatial autocorrelation: Banana farms and policy implications in Martinique. Agric Ecosyst Environ 181(0):12–21. doi:10.1016/j.agee.2013.09.001

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Monographs in spatial and environmental systems analysis. Pion, London

    Google Scholar 

  • Debolini M, Marraccini E, Rizzo D, Galli M, Bonari E (2013) Mapping local spatial knowledge in the assessment of agricultural systems: A case study on the provision of agricultural services. Appl Geogr 42(0):23–33. doi:10.1016/j.apgeog.2013.04.006

    Article  Google Scholar 

  • Dury J, Schaller N, Garcia F, Reynaud A, Bergez J-E (2011) Models to support cropping plan and crop rotation decisions. A review. Agron Sustain Dev 32(2):567–580. doi:10.1007/s13593-011-0037-x

    Article  Google Scholar 

  • ESRI (Environmental Systems Research Institute) (2009) ArcGIS 9.3.1. Environmental Systems Research Institute, Redlands, California, USA

  • FAOSTAT (2008) FAO Statistics Database Rome, Italy

  • Iraizoz B, Gorton M, Davidova S (2007) Segmenting farms for analysing agricultural trajectories: A case study of the Navarra region in Spain. Agric Syst 93(1–3):143–169. doi:10.1016/j.agsy.2006.05.002

    Article  Google Scholar 

  • Leenhardt D, Angevin F, Biarnes A, Colbach N, Mignolet C (2010) Describing and locating cropping systems on a regional scale. A review. Agron Sustain Dev 30(1):131–138. doi:10.1051/agro/2009002

    Article  Google Scholar 

  • Madry W, Mena Y, Roszkowska-Madra B, Gozdowski D, Hryniewski R, Castel JM (2013) An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Span J Agric Res 11(2):316–326. doi:10.5424/sjar/2013112-3295

    Article  Google Scholar 

  • Maton L, Leenhardt D, Bergez JE (2007) Geo-referenced indicators of maize sowing and cultivar choice for better water management. Agron Sustain Dev 27:377–386. doi:10.1051/agro:2007018

    Article  Google Scholar 

  • Mignolet C, Schott C, Benoit M (2007) Spatial dynamics of farming practices in the Seine basin: methods for agronomic approaches on a regional scale. Sci Total Environ 375(1–3):13–32. doi:10.1016/j.scitotenv.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27:286–306. doi:10.1111/j.1538-4632.1995.tb00912.x

    Article  Google Scholar 

  • Rounsevell MDA, Annetts JE, Audsley E, Mayr T, Reginster I (2003) Modelling the spatial distribution of agricultural land use at the regional scale. Agric Ecosyst Environ 95(2–3):465–479. doi:10.1016/s0167-8809(02)00217-7

    Article  Google Scholar 

  • Schaller N, Lazrak EG, Martin P, Mari JF, Aubry C, Benoit M (2012) Combining farmers’ decision rules and landscape stochastic regularities for landscape modelling. Landsc Ecol 27(3):433–446. doi:10.1007/s10980-011-9691-2

    Article  Google Scholar 

  • Sorel L, Viaud V, Durand P, Walter C (2010) Modeling spatio-temporal crop allocation patterns by a stochastic decision tree method, considering agronomic driving factors. Agric Syst 103(9):647–655. doi:10.1016/j.agsy.2010.08.003

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. doi:10.1038/nature01014

    Article  CAS  PubMed  Google Scholar 

  • Tittonell P, Muriuki A, Shepherd KD, Mugendi D, Kaizzi KC, Okeyo J, Verchot L, Coe R, Vanlauwe B (2010) The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa—a typology of smallholder farms. Agric Syst 103(2):83–97. doi:10.1016/j.agsy.2009.10.001

    Article  Google Scholar 

  • Valbuena D, Verburg PH, Bregt AK (2008) A method to define a typology for agent-based analysis in regional land-use research. Agric Ecosyst Environ 128(1–2):27–36. doi:10.1016/j.agee.2008.04.015

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wijnands E (1999) Crop rotation in organic farming: theory and practice. In: Olesen JE, Eltun R, Gooding MJ et al (eds) Designing and testing crop rotations for organic farming. DARCOF, Foulum, pp 21–36

    Google Scholar 

  • Xiao Y, Mignolet C, Mari J-F, Benoit M (2014) Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: a case from France. Comput Electron Agric 102(0):51–63. doi:10.1016/j.compag.2014.01.010

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Agrigua Association, the National Institute of Geographic and Forest Information (IGN), the Guadeloupe department of public works, land use and housing (DEAL), and the Guadeloupe Chambers of Agriculture (CA) for providing the geographical information used in this study. The first author benefited from a PhD grant co-financed by the European Union (Fonds Social Européen), Guadeloupe Regional Council, and INRA EA department. We would like to thank the two anonymous reviewers for their helpful comments on the first version of the manuscript. Authors would like to deeply thank Dr Yves-Marie Cabidoche, who passed away in June 2012, and to dedicate this article to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Chopin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopin, P., Blazy, JM. & Doré, T. A new method to assess farming system evolution at the landscape scale. Agron. Sustain. Dev. 35, 325–337 (2015). https://doi.org/10.1007/s13593-014-0250-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0250-5

Keywords

Navigation