Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 67–81 | Cite as

Understanding and managing soil biodiversity: a major challenge in agroecology

  • Philippe Lemanceau
  • Pierre-Alain Maron
  • Sylvie Mazurier
  • Christophe Mougel
  • Barbara Pivato
  • Pierre Plassart
  • Lionel Ranjard
  • Cécile Revellin
  • Vincent Tardy
  • Daniel Wipf
Review Article


Soils are living environments in which particularly abundant and diverse microbiome and fauna are evolving. The resulting biological functioning has a direct impact not only on soil fertility but also on a series of ecosystems services. Thus, microbial communities are involved in geochemical cycles in which microbial enzymes catalyse the different steps. Modulation of the corresponding activities is essential as these affect plant growth and environmental quality. In general, biodiversity affects both the productivity and stability of agroecosystems. It is therefore of paramount importance to take soil biodiversity and biological functioning into account when designing cropping systems and evaluating their impacts. The progress achieved in soil microbiology in recent years now makes it possible to propose analyses of soil biology, as has been feasible for many years for soil physicochemistry. These analyses obviously require the use of standardized procedures for soil sampling, measuring the abundance and diversity of the microbial communities, as well as the identification of bioindicators. Similarly, referential systems need to be established to interpret these analyses and diagnose the biological status of soils, and, more especially, to determine whether the obtained values are within the range of variations normal for a given soil type and land use. Great progress to standardize such procedures and establish referential systems has been achieved during large-scale research programmes carried out to characterize biodiversity on national and European scales. These diagnostic elements need to be accompanied by recommendations. The aim of ongoing research is thus to propose aids for decision-making, based on the results of biological analyses, so attempts can be made to monitor and manage biodiversity to satisfy soil fertility requirements and ensure the ecosystem services expected of soils.


Agroecology Biodiversity Microbial communities Plant growth and heath Soil biology Soil fertility 



This work was supported by the European Commission within the EcoFINDERS project (FP7-264465). The authors are grateful to Diana Warwick for helping with the English text and to Laure Avoscan and Annie Colombet for photos of microscopic observations.


  1. Bååth E, Anderson TH (2003) Comparisons of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963. doi: 10.1016/S0038-0717(03)00154-8 CrossRefGoogle Scholar
  2. Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi: 10.1111/j.1461-0248.2006.00963.x PubMedCrossRefGoogle Scholar
  3. Baslam M, Pascual L, Sanchez-Dial M, Erro J, Garcia-Mina JM, Goicoechea N (2011) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59:11129–11140. doi: 10.1021/jf202445y PubMedCrossRefGoogle Scholar
  4. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. doi: 10.1038/ismej.2010.171 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bispo A, Grand C, Galsomies L (2009) Le programme ADEME “Bioindicateurs de qualité des sols”. Étude Gest Sols 16:145–158Google Scholar
  6. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root inhabiting bacterial microbiota. Nature 488:91–95. doi: 10.1038/nature11336 PubMedCrossRefGoogle Scholar
  7. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30CrossRefGoogle Scholar
  8. Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A 92:4197–4201PubMedCentralPubMedCrossRefGoogle Scholar
  9. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494. doi: 10.1007/s00572-006-0065-6 PubMedCrossRefGoogle Scholar
  10. Dequiedt S, Thioulouse J, Jolivet C, Saby NPA, Lelievre M, Maron PA, Martin MP, Chemidlin-Prévost-Bouré N, Toutain B, Arrouays D, Lemanceau P, Ranjard L (2009) Biogeographical patterns of soil bacterial communities. Environ Microbiol Rep 1:251–255. doi: 10.1111/j.1758-2229.2009.00040.x PubMedCrossRefGoogle Scholar
  11. Dequiedt S, Saby NPA, Lelievre M, Jolivet C, Thioulouse J, Toutain B, Arrouays D, Bispo A, Lemanceau P, Ranjard L (2011) Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Glob Ecol Biogeogr 20:641–652. doi: 10.1111/j.1466-8238.2010.00628.x CrossRefGoogle Scholar
  12. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. doi: 10.1073/pnas.0507535103 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96. doi: 10.1016/j.soilbio.2010.09.017 CrossRefGoogle Scholar
  14. Friesen M, Porter SS, Stark SC, von Wettberg EJ, Sachc JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46. doi: 10.1146/annurev-ecolsys-102710-145039 CrossRefGoogle Scholar
  15. Gardi C, Montanarella L, Arrouays D, Bispo A, Lemanceau P, Jolivet C, Mulder C, Ranjard L, Roembke J, Rutgers M, Menta C (2009) Soil biodiversity monitoring in Europe: ongoing activities and challenges. Eur J Soil Sci 60:807–819. doi: 10.1111/j.1365-2389.2009.01177.x CrossRefGoogle Scholar
  16. Gianinazzi S, Gollotte A, Binet MA, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. doi: 10.1007/s00572-010-0333-3 PubMedCrossRefGoogle Scholar
  17. Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promoted community structure stability and functional resilience after perturbation. Environ Microbiol 7:301–313. doi: 10.1111/j.1462-2920.2005.00695.x PubMedCrossRefGoogle Scholar
  18. Gobat JM, Aragno M, Matthey W, Bally R (2010) Le sol vivant. Bases de pédologie, Biologie des sols, 3e édition revue et augmentée. Presses Polytechniques et Universitaires Romandes, LausanneGoogle Scholar
  19. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129. doi: 10.1111/j.1574-6976.2012.00343.x PubMedGoogle Scholar
  20. Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sorensen SJ, Baath E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294CrossRefGoogle Scholar
  21. Griffiths RI, Thomson B, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654. doi: 10.1111/j.1462-2920.2011.02480.x PubMedCrossRefGoogle Scholar
  22. Henault C, Revellin C (2011) Inoculants of leguminous crops for mitigating soil emissions of the greenhouse gas nitrous oxide. Plant Soil 346:289–296. doi: 10.1007/s11104-011-0820-0 CrossRefGoogle Scholar
  23. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi: 10.1007/s11104-008-9668-3 CrossRefGoogle Scholar
  24. Horwath WR, Paul EA (1994) Microbial biomass. In: Weaver RW (ed) Methods of soil analysis, SSSA book series 5. Soil Sci Soc Am Inc, Madison, pp 727–752Google Scholar
  25. Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammoniaoxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci U S A 101:15136–15141. doi: 10.1073/pnas.0406616101 PubMedCentralPubMedCrossRefGoogle Scholar
  26. INRA (2010) Document d’orientation INRA 2010–2020, une science pour l’impact. INRA, ParisGoogle Scholar
  27. ISO Standard 11063 (2009) Soil quality—method to directly extract DNA from soil samples. ISO, GenèveGoogle Scholar
  28. Johnson MJ, Lee KY, Scow KM (2003) DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114:279–303. doi: 10.1016/S0016-7061(03)00045-4 CrossRefGoogle Scholar
  29. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453. doi: 10.1038/ismej.2008.127 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lambert H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115. doi: 10.1007/s11104-009-0042-x CrossRefGoogle Scholar
  31. Lata JC, Guillaume K, Degrange V, Abbadie L, Lensi R (2000) Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale: an inhibition-stimulation balance hypothesis. Proc Biol Sci 267:595–600. doi: 10.1098/rspb.2000.1043 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lata JC, Degrange V, Raynaud X, Maron PA, Lensi R, Abbadie L (2004) Grass populations control nitrification in savanna soils. Funct Ecol 18:605–611. doi: 10.1111/j.0269-8463.2004.00880.x CrossRefGoogle Scholar
  33. Lawes JB, Gilbert JH, Warington R (1882) On the amount and composition of the rain and drainage water collected at Rothamsted. Clowes, London. Originally published in J Royal Agr Soc Eng XVII 1881:241–279, 311–350; XVIII 1882:1–71Google Scholar
  34. Leckie SE, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW (2004) Comparison of chloroform fumigation extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biol Biochem 36:529–532. doi: 10.1016/j.soilbio.2003.10.014 CrossRefGoogle Scholar
  35. Lejon DPH, Chaussod R, Ranger J, Ranjard L (2005) Microbial community structure and density under different tree species in an acid forest soil (Morvan, France). Microb Ecol 50:614–625. doi: 10.1007/s00248-005-5130-8 PubMedCrossRefGoogle Scholar
  36. Lejon DPH, Sebastia J, Lamy I, Nowak V, Chaussod R, Ranjard L (2007) Microbial density and genetic structure in two agricultural soils submitted to various organic managements. Microb Ecol 53:650–653. doi: 10.1007/s00248-006-9145-6 PubMedCrossRefGoogle Scholar
  37. Lemanceau P (2011) EcoFINDERS characterizes biodiversity and functions of soils in Europe 23 partners in 10 European countries and China. Biofutur 326:56–58Google Scholar
  38. Lindstrom K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463. doi: 10.1016/j.resmic.2010.05.005 PubMedCrossRefGoogle Scholar
  39. Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17. doi: 10.1034/j.1600-0706.2000.910101.x CrossRefGoogle Scholar
  40. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio TGD, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi: 10.1038/nature11237 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166. doi: 10.1007/s00248-010-9658-x PubMedCrossRefGoogle Scholar
  42. Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53:486–493. doi: 10.1007/s00248-006-9196-8 PubMedCrossRefGoogle Scholar
  43. Maron PA, Mougel C, Ranjard L (2011) Soil microbial diversity: spatial overview, driving factors and functional interest. C R Acad Sci Biol 334:403–411. doi: 10.1016/j.crvi.2010.12.003 Google Scholar
  44. Marstorp H, Guan X, Gong P (2000) Relationship between dsDNA, chloroformlabile C and ergosterol in soils of different organic matter contents and pH. Soil Biol Biochem 32:879–882CrossRefGoogle Scholar
  45. Mavrodi OV, Mavrodi DV, Thomashow LS, Weller DM (2007) Quantification of 2,4 diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere by real-time PCR. Appl Environ Microbiol 73:5531–5538. doi: 10.1128/AEM.00925-07 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Mougel C, Maron PA, Philippot L, Ranjard L, Lemanceau P (2011) Translation of metagenomics agroecosystems in ecological services. Biofutur 319:44–47Google Scholar
  47. Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509. doi: 10.1038/37348 CrossRefGoogle Scholar
  48. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanism and controls. Agronomie 23:375–396. doi: 10.1051/agro:2003011 CrossRefGoogle Scholar
  49. Nicolardot B, Bouziri L, Bastian F, Ranjard L (2007) A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39:1631–1644. doi: 10.1016/j.soilbio.2007.01.012 CrossRefGoogle Scholar
  50. Peres G, Vandenbulcke F, Guernion M, Hedde M, Beguiristain T, Douay F, Houot S, Piron D, Richard A, Bispo A, Grand C, Galsomies L, Cluzeau D (2011) Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France). Pedobiologia 54:S77–S87. doi: 10.1016/j.pedobi.2011.09.015 CrossRefGoogle Scholar
  51. Petric I, Philippot L, Abbate C, Bispo A, Chesnot T, Hallin S, Laval K, Lebeau T, Lemanceau P, Leyval C, Lindström K, Pandard P, Romero E, Sarr A, Schloter M, Simonet P, Smalla K, Wilke BM, Martin-Laurent F (2011) Inter-laboratory evaluation of the ISO standard 11063 “Soil quality—method to directly extract DNA from soil samples”. J Microbiol Meth 84:454–460. doi: 10.1016/j.mimet.2011.01.016 CrossRefGoogle Scholar
  52. Philippot L (2002) Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta 1577:355–376. doi: 10.1016/S0167-4781(02)00420-7 PubMedCrossRefGoogle Scholar
  53. Philippot L, Hallin S (2011) Towards food, feed and energy crops mitigating climate change. Trends Plant Sci 16:476–480. doi: 10.1016/j.tplants.2011.05.00 PubMedCrossRefGoogle Scholar
  54. Philippot L, Abbate C, Bispo A, Chesnot T, Hallin S, Lemanceau P, Lindström K, Pandard P, Romero E, Schloter M, Simonet P, Smalla K, Wilke BM, Petric I, Martin-Laurent F (2010) Soil microbial diversity: an ISO standard for soil DNA extraction. J Soils Sediments 10:1344–1345. doi: 10.1007/s11368-010-0265-8 CrossRefGoogle Scholar
  55. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013a) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi: 10.1038/nrmicro3109 PubMedCrossRefGoogle Scholar
  56. Philippot L, Spor A, Henault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron PA (2013b) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619. doi: 10.1038/ismej.2013.34 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Plassart P, Terrat S, Thomson B, Griffiths R, Dequiedt S, Lelievre M, Regnier T, Nowak V, Bailey M, Lemanceau P, Bispo A, Chabbi A, Maron PA, Mougel C, Ranjard L (2012) Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure. PLoS One 7:e44279. doi: 10.1371/journal.pone.0044279 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887PubMedCentralPubMedGoogle Scholar
  59. Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26:576–590. doi: 10.1016/j.biotechadv.2008.08.002 PubMedCrossRefGoogle Scholar
  60. Ranjard L, Richaume AS (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716PubMedCrossRefGoogle Scholar
  61. Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120. doi: 10.1046/j.1462-2920.2003.00521.x PubMedCrossRefGoogle Scholar
  62. Ranjard L, Echairi A, Nowak V, Lejon DPH, Nouaïm R, Chaussod R (2006) Field and microcosm experiments to evaluate the effects of agricultural copper treatment on the density and genetic structure of microbial communities in two different soils. FEMS Microbiol Ecol 58:303–315. doi: 10.1111/j.1574-6941.2006.00157.x PubMedCrossRefGoogle Scholar
  63. Ranjard L, Dequiedt S, Lelievre M, Maron PA, Mougel C, Morin F, Lemanceau P (2009) Platform GenoSol: a new tool for conserving and exploring soil microbial diversity. Environ Microbiol Rep 1:97–99. doi: 10.1111/j.1758-2229.2009.00023.x PubMedCrossRefGoogle Scholar
  64. Ranjard L, Dequiedt S, Jolivet C, Saby NPA, Thioulouse J, Harmand J, Loisel P, Rapaport A, Fall S, Simonet P, Joffre R, Chemidlin-Prévost Bouré N, Maron PA, Mougel C, Martin MP, Toutain B, Arrouays D, Lemanceau P (2010) Biogeography of soil microbial communities: a review and a description of the ongoing French National Initiative. Agron Sustain Dev 30:359–365. doi: 10.1051/agro/2009033 CrossRefGoogle Scholar
  65. Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895. doi: 10.3852/mycologia.98.6.885 PubMedCrossRefGoogle Scholar
  66. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921. doi: 10.1126/science.289.5486.1920 PubMedCrossRefGoogle Scholar
  67. Rutgers M, Schouten AJ, Bloem J, van Eekeren N, de Goede RGM, Akkerhuis GAJM, van der Wal A, Mulder C, Brussaard L, Breure AM (2009) Biological measurements in a nationwide soil monitoring network. Eur J Soil Sci 60:820–832. doi: 10.1111/j.1365-2389.2009.01163.x CrossRefGoogle Scholar
  68. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310. doi: 10.1016/S0958-1669(03)00067-3 PubMedCrossRefGoogle Scholar
  69. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  70. Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci U S A 96:4786–4790. doi: 10.1073/pnas.96.9.4786 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Sprent JI (2008) 60 Ma of legume nodulation. What’s new? What’s changing? J Exp Bot 59:1081–1084. doi: 10.1093/jxb/erm286 PubMedCrossRefGoogle Scholar
  72. Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M et al (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci U S A 106:17302–17307. doi: 10.1073/pnas.0903694106 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Tardy V, Mathieu O, Leveque J, Terrat V, Chabbi A, Lemanceau P, Ranjard L, Maron PA (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183. doi: 10.1111/1758-2229.12126 PubMedCrossRefGoogle Scholar
  74. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. doi: 10.1038/379718a0 CrossRefGoogle Scholar
  75. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. doi: 10.1126/science.277.5330.1300 CrossRefGoogle Scholar
  76. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  77. Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. doi: 10.1038/23932 CrossRefGoogle Scholar
  78. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  79. Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM, van Elsas JD, Bailey MJ, Nalin R, Philippot L (2009) TerraGenome: a consortium for the sequencing of a soil metagenome. Nat Rev Microbiol 7:252. doi: 10.1038/nrmicro2119
  80. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. doi: 10.1146/annurev.phyto.40.030402.110010 PubMedCrossRefGoogle Scholar
  81. Werner D, Newton WE (2005) Nitrogen fixation in agriculture, forestry, ecology and the environment. Kluwer, DordrechtCrossRefGoogle Scholar
  82. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468. doi: 10.1073/pnas.96.4.1463 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Zancarini A, Mougel C, Terrat S, Salon C, Munier-Jolain N (2013a) Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities. Plant Soil 365:183–199. doi: 10.1007/s11104-012-1364-7 CrossRefGoogle Scholar
  84. Zancarini A, Lépinay C, Burstin J, Duc G, Lemanceau P, Moreau D, Munier-Jolain N, Pivato B, Rigaud T, Salon C, Mougel C (2013b) Combining molecular microbial ecology with ecophysiology and plant genetics for a better understanding of plant-microbial communities interactions in the rhizosphere. Chapter 7. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 69–86CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Philippe Lemanceau
    • 1
  • Pierre-Alain Maron
    • 1
  • Sylvie Mazurier
    • 1
  • Christophe Mougel
    • 2
  • Barbara Pivato
    • 1
  • Pierre Plassart
    • 1
  • Lionel Ranjard
    • 1
  • Cécile Revellin
    • 1
  • Vincent Tardy
    • 1
  • Daniel Wipf
    • 3
  1. 1.INRA, UMR 1347 AgroécologieDijon cedexFrance
  2. 2.INRA, UMR 1349 IGEPP BP35327Le Rheu cedexFrance
  3. 3.Université de Bourgogne, UMR 1347 AgroécologieDijon cedexFrance

Personalised recommendations