Skip to main content

High environmental risk and low yield of urban tomato gardens in Benin

Abstract

In sub-Saharan Africa, urban farmers have recently intensified the production of vegetables to cope with the increasing food demand. As a consequence, such an intensification may lead to potential risks for the environment and human health. There is therefore a need for an integrated evaluation of urban agricultural practices. Here, we studied tomato production in Benin cities. We measured performances and the environmental risks. We have monitored 12 cropping systems during 6 months and we calculated the pesticide treatment frequency index (TFI), the nutrient budgets, and the field emissions. Our results show that yields were low and variable, averaging at 9,533 kg.ha−1 and ranging from 0 to 21,163 kg.ha−1. The average TFI for pesticides was 8.9. The maximum TFI of 25 was observed for an insecticide applied weekly at 2.3 times the official rate. We observed an excess of the average nutrient budget of 120 kg N and 84 kg P. ha−1. In conclusion, our study of urban tomato production revealed poor practices and high risks for health and the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdulkadir A, Dossa LH, Lompo D-P et al (2012) Characterization of urban and peri-urban agroecosystems in three West African cities. Int J Agric Sustain 10:289–314. doi:10.1080/14735903.2012.663559

    Article  Google Scholar 

  2. Ahouangninou C, Fayomi BE, Martin T (2011) Évaluation des risques sanitaires et environnementaux des pratiques phytosanitaires des producteurs maraîchers dans la commune rurale de Tori-Bossito (Sud-Bénin). Cah Agric 20:216–222

    Google Scholar 

  3. Ahouangninou C, Martin T, Edorh P et al (2012) Characterization of health and environmental risks of pesticide use in market-gardening in the rural city of Tori-Bossito in Benin, West Africa. J Environ Prot 3:241–248. doi:10.4236/jep.2012.33030

    CAS  Article  Google Scholar 

  4. Asgedom S, Struik PC, Heuvelink E, Araia W (2011) Opportunities and constraints of tomato production in Eritrea. Afr J Agric Res 6:956–967

    Google Scholar 

  5. Atidegla S, Agbossou E, Huat J, Glele Kakai R (2012) Contamination métallique des légumes des périmètres maraîchers urbains et péri urbains: cas de la commune de Grand–Popo au Bénin. Int J Biol Chem Sci 5:2351–2361. doi:10.4314/ijbcs.v5i6.15

    Google Scholar 

  6. Bouwman AF, Van Der Hoek KW (1997) Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries. Atmos Environ 31:4095–4102. doi:10.1016/s1352-2310(97)00288-4

    CAS  Article  Google Scholar 

  7. Brentrup F, Küsters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess 5:349–357. doi:10.1007/BF02978670

    CAS  Article  Google Scholar 

  8. Brock B, Foeken D (2006) Urban horticulture for a better environment: a case study of Cotonou, Benin. Habitat Int 30:558–578. doi:10.1016/j.habitatint.2005.02.001

    Article  Google Scholar 

  9. Bussink DW, Oenema O (1998) Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr Cycl Agroecosyst 51:19–33. doi:10.1023/a:1009747109538

    Article  Google Scholar 

  10. Cellura M, Longo S, Mistretta M (2012) Life cycle assessment (LCA) of protected crops: an Italian case study. J Clean Prod 28:56–62. doi:10.1016/j.jclepro.2011.10.021

    Article  Google Scholar 

  11. Cissé I, Tandia AA, Fall ST (2003) Usage incontrôlé des pesticides en agriculture périurbaine: cas de la zone des Niayes au Sénégal. Cah Agric 12:181–186

    Google Scholar 

  12. Commission E (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. Joint Research Centre-Institute for Environment and. Sustainability, Luxembourg

    Google Scholar 

  13. De Bon H, Parrot L, Moustier P (2010) Sustainable urban agriculture in developing countries. A review. Agron Sustain Dev 30:21–32. doi:10.1051/agro:2008062

    Article  Google Scholar 

  14. De Bon H, Huat J, Parrot L et al (2014) Pesticide risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa. A review. Agron Sustain Dev Online First Artic. doi:10.1007/s13593-014-0216-7

    Google Scholar 

  15. Diogo RC, Buerkert A, Schlecht E (2010) Horizontal nutrient fluxes and food safety in urban and peri-urban vegetable and millet cultivation of Niamey, Niger. Nutr Cycl Agroecosyst 87:81–102. doi:10.1007/s10705-009-9315-2

    Article  Google Scholar 

  16. Drechsel P, Zimmermann U (2005) Factors influencing the intensification of farming systems and soil-nutrient management in the rural–urban continuum of SW Ghana. J Plant Nutr Soil Sci 168:694–702. doi:10.1002/jpln.200521775

    CAS  Article  Google Scholar 

  17. E-phy (2013) Catalogue des produits phytopharmaceutiques et de leurs usages des matières fertilisantes et des supports de culture homologués en France. In: Ministère l’agriculture l’agro-alimentaire, Organ. Natl. la Prot. des Végétaux. http://e-phy.agriculture.gouv.fr/. Accessed 13 Jun 2013

  18. Haas G, Wetterich F, Geier U (2000) Life cycle assessment framework in agriculture on the farm level. Int J Life Cycle Assess 5:345–348. doi:10.1007/BF02978669

    Article  Google Scholar 

  19. Ingwersen WW (2012) Life cycle assessment of fresh pineapple from Costa Rica. J Clean Prod 35:152–163. doi:10.1016/j.jclepro.2012.05.035

    Article  Google Scholar 

  20. IPCC (2006) Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In: Eggleston S, Buendia L, Miwa K et al (eds) IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Hayama, Japan, pp 11.1–11.54

    Google Scholar 

  21. ISO 14040 (2006) Environmental management - Life cycle assessment - Principles and framework. International Organization for Standardization, ISO 14040:2006

  22. ISO 14044 (2006) Environmental management-life cycle assessment-requirements and guidelines. International Standards Organization, 14044:2006 (E)

  23. Lompo DJ-P (2012) Matter flows and balances in urban vegetable gardens of Bobo Dioulasso, Burkina Faso (West Africa). PhD thesis, University of Kassel

  24. Lompo DJ-P, Sangaré SAK, Compaoré E et al (2012) Gaseous emissions of nitrogen and carbon from urban vegetable gardens in Bobo-Dioulasso, Burkina Faso. J Plant Nutr Soil Sci 175:846–853. doi:10.1002/jpln.201200012

    CAS  Article  Google Scholar 

  25. Mila i Canals L, Muñoz I, Hospido A, et al. (2008) Life Cycle Assessment of domesctic vs. imported vegetables. Case studies on broccoli, salad crops and grean beans. Working paper n°01/08. Center for environmental strategy University of Surrey, Guilford, UK

  26. Mouron P, Nemecek T, Scholz RW, Weber O (2006) Management influence on environmental impacts in an apple production system on Swiss fruit farms: combining life cycle assessment with statistical risk assessment. Agric Ecosyst Environ 114:311–322. doi:10.1016/j.agee.2005.11.020

    Article  Google Scholar 

  27. Nemecek T, Kägi T (2007) Life Cycle Inventories of Agricultural Production Systems. Final report ecoinvent n°15. Swiss Centre for Life Cycle Inventories Ecoinvent - ART, Zürich and Dübendorf, Switzerland

  28. Predotova M, Gebauer J, Diogo RVC et al (2010) Emissions of ammonia, nitrous oxide and carbon dioxide from urban gardens in Niamey, Niger. F Crop Res 115:1–8. doi:10.1016/j.fcr.2009.09.010

    Article  Google Scholar 

  29. Predotova M, Bischoff W-A, Buerkert A (2011) Mineral-nitrogen and phosphorus leaching from vegetable gardens in Niamey, Niger. J Plant Nutr Soil Sci 174:47–55. doi:10.1002/jpln.200900255

    CAS  Article  Google Scholar 

  30. Rosendahl I, Laabs V, Atcha-Ahowe C et al (2009) Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa. J Environ Monit 11:1157–1164. doi:10.1039/b903470f

    CAS  PubMed  Article  Google Scholar 

  31. Sangare S, Compaore E, Buerkert A et al (2012) Field-scale analysis of water and nutrient use efficiency for vegetable production in a West African urban agricultural system. Nutr Cycl Agroecosyst 92:207–224. doi:10.1007/s10705-012-9484-2

    CAS  Article  Google Scholar 

  32. Sim S, Barry M, Clift R, Cowell SJ (2007) The relative importance of transport in determining an appropriate sustainability strategy for food sourcing. Int J Life Cycle Assess 12:422–431. doi:10.1065/lca2006.07.259

    Google Scholar 

  33. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7

    CAS  Article  Google Scholar 

  34. UN-HABITAT (2013) UN-Habitat Global Activities Report 2013. United Nations Human Settlements Programme, Available at www.unhabitat.org

  35. Van Bol V, Claeys S, Debongnie P et al (2003) Pesticide indicators. Pestic Outlook 14:159. doi:10.1039/b308507b

    Article  Google Scholar 

  36. Yadouleton AWM, Asidi A, Djouaka RF et al (2009) Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malar J 8:103. doi:10.1186/1475-2875-8-103

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aurélie Perrin.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perrin, A., Basset-Mens, C., Huat, J. et al. High environmental risk and low yield of urban tomato gardens in Benin. Agron. Sustain. Dev. 35, 305–315 (2015). https://doi.org/10.1007/s13593-014-0241-6

Download citation

Keywords

  • Urban agriculture
  • Life-cycle inventory
  • Typology
  • Cropping system data
  • Treatment frequency index
  • Nutrient budget