Skip to main content
Log in

Mechanism of imazamox resistance of the Clearfield® wheat cultivar for better weed control

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Wheat is a major world crop. Wheat production is actually decreased by the emergence of herbicide-resistant weeds commonly found in wheat fields. The need to control these weeds has led to the use of herbicides, such as imidazolinones, that are not typically used in wheat fields. As a consequence, a new wheat cultivar, the Clearfield® wheat Pandora variety, has been developed to be resistant to imidazolinones. Actually, only few mechanisms of resistance are known. Here, we studied non-target mechanisms and the resistance to imazamox for susceptible and resistant cultivars, under greenhouse and laboratory conditions. Our results show a resistance factor of 14.3. We observed that the acetolactate synthase enzyme in the resistant cultivar showed resistance to imazamox. We found also variable cross-resistance to all tested imidazolinone herbicides. Metabolism studies showed a high conversion of imazamox to two metabolites in the resistant cultivar. We also observed a similar penetration of imazamox in both cultivars and a high translocation of imazamox to the root in the susceptible cultivar. Results on cytochrome P450 suggest that the principal resistance mechanism is not in its metabolism. This is the first study on the metabolism of imazamox in Clearfield® wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aichele T, Penner D (2005) Adsorption, desorption, and degradation of imidazolinones in soil. Weed Technol 19:154–159. doi:10.1614/WT-04-057R

    Article  CAS  Google Scholar 

  • Anderson JA, Matthiesen L, Hegstad J (2004) Resistance to an imidazolinone herbicide is conferred by a gene on chromosome 6DL in the wheat line cv. 9804. Weed Sci 52:83–90. doi:10.1614/WS-03-055R

    Article  CAS  Google Scholar 

  • Bond JA, Stephenson DO, Barnes JW, Bararpour MT, Oliver LR (2005) Diclofop-resistant Italian ryegrass (Lolium multiflorum) control in imidazolinone-tolerant wheat. Weed Technol 19:437–442. doi:10.1614/WT-04-199R

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brady TM, Cross B, Doehner RF, Finn J, Ladner DL (1998) The discovery of imazamox, a new broad-spectrum imidazolinone herbicide. In: Baker DR, American Chemical Society (eds) Synthesis and chemistry of agrochemicals V. ACS Symposium Series, New Jersey, pp 30–37. doi:10.1021/bk-1998-0686.ch005

    Chapter  Google Scholar 

  • Bukun B, Nissen SJ, Shaner DL, Vassios JD (2012) Imazamox absorption, translocation, and metabolism in red lentil and dry bean. Weed Sci 60:350–354. doi:10.1614/WS-D-11-00182.1

    Article  CAS  Google Scholar 

  • Colquhoun J, Mallory-Smith C, Ball D (2003) Weed management in Clearfield wheat with imazamox. Oregon State University Extension Publication (EM8833), Corvallis

    Google Scholar 

  • Cruz-Hipólito H, Osuna MD, Heredia A, Ruiz-Santaella JP, De Prado R (2009) Nontarget mechanism involved in glyphosate tolerance found in Canavalia ensiformis plants. J Agric Food Chem 57:4844–4848. doi:10.1021/jf9003253

    Article  PubMed  Google Scholar 

  • Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309–324. doi:10.1016/j.plaphy.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  • Fischer AJ, Bayer DE, Carriere MD, Ateh CM, Yim K (2000) Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic Biochem Physiol 68:156–165. doi:10.1006/pest.2000.2511

    Article  CAS  Google Scholar 

  • González-Torralva F, Gil-Humanes J, Barro F, Domínguez-Valenzuela JA, De Prado R (2014) First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards. Agron Sustain Dev 34:553–560. doi:10.1007/s13593-013-0163-8

    Article  Google Scholar 

  • Han H, Yu Q, Purba E, Li M, Walsh M, Friesen S, Powles SB (2012) A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Manag Sci 68:1164–1170. doi:10.1002/ps.3278

    Article  CAS  PubMed  Google Scholar 

  • Harir M, Frommberger M, Gaspar A, Martens D, Kettrup A, El Azzouzi M, Schmitt-Kopplin P (2007) Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Bioanal Chem 389:1459–1467. doi:10.1007/s00216-007-1343-7

    Article  CAS  PubMed  Google Scholar 

  • Kolkman JM, Slabaugh MB, Bruniard JM, Berry S, Bushman BS, Olungu C, Maes N, Abratti G, Zambelli A, Miller JF, Leon A, Knapp SJ (2004) Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet 109:1147–1159. doi:10.1007/s00122-004-1716-7

    Article  CAS  PubMed  Google Scholar 

  • Li D, Barclay I, Jose K, Stefanova K, Appels R (2008) A mutation at the Ala122 position of acetohydroxyacid synthase (AHAS) located on chromosome 6D of wheat: improved resistance to imidazolinone and a faster assay for marker assisted selection. Mol Breeding 22:217–225. doi:10.1007/s11032-008-9168-4

    Article  CAS  Google Scholar 

  • Mellado MZ, Madariaga RB (2003) Pandora-INIA, nuevo cultivar de trigo harinero de primavera para Chile. Agric Téc (Chile) 63:319–322. doi:10.4067/S0365-28072003000300011

    Google Scholar 

  • Mougin C, Cabanne F, Canivenc MC, Scalla R (1990) Hydroxylation and N-demethylation of chlorotoluron by wheat microsomal enzymes. Plant Sci 66:195–203. doi:10.1016/0168-9452(90)90204-2

    Article  CAS  Google Scholar 

  • Ohba K, Minoura M, Safarpour MM, Picard GL, Safarpour H (1997) Method for the determination of imazamox and its two hydroxy and glucose conjugate metabolites in adzuki beans by capillary electrophoresis. J Pestic Sci 22:277–281. doi:10.1584/jpestics.22.277

    Article  CAS  Google Scholar 

  • Osuna MD, De Prado R (2003) Conyza albida: a new biotype with ALS inhibitor resistance. Weed Res 43:221–226. doi:10.1046/j.1365-3180.2003.00337.x

    Article  CAS  Google Scholar 

  • Pozniak CJ, Hucl PJ (2004) Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci 44:23–30. doi:10.2135/cropsci2004.2300

    Article  CAS  Google Scholar 

  • Rainbolt CR, Thill DC, Zemetra RS, Shaner DL (2005) Imidazolinone-resistant wheat acetolactate synthase in vivo response to imazamox. Weed Technol 19:539–548. doi:10.1614/WT-03-215R1.1

    Article  CAS  Google Scholar 

  • Rodríguez-Suárez C, Ramírez MC, Martínez C, Nadal S, Martín A, Atienza SG (2009) Selection and molecular characterization of imidazolinone resistant mutation-derived lines of Tritordeum HT621. Mol Breeding 23:565–572. doi:10.1007/s11032-009-9256-0

    Article  Google Scholar 

  • Rojano-Delgado AM, Cruz-Hipolito H, De Prado R, Luque de Castro MD, Franco AR (2011) Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants. Phytochemistry 73:34–41. doi:10.1016/j.phytochem.2011.09.007

    Article  PubMed  Google Scholar 

  • Rojano-Delgado AM, Priego-Capote F, De Prado R, Luque de Castro MD (2013) Ultrasound-assisted extraction with LC–TOF/MS identification and LC–UV determination of imazamox and its metabolites in leaves of wheat plants. Phytochem Anal. doi:10.1002/pca.2467

    PubMed  Google Scholar 

  • Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose response relationships. Weed Technol 9:218–227

    Google Scholar 

  • Seefeldt SS, Zemetra R, Young FL, Jones SS (1998) Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) x wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci 46:632–634

    CAS  Google Scholar 

  • Shaner DL, O’Connor SL (1991) The imidazolinone herbicides. In: Duke SO (ed) Herbicide resistant crops. CRC Press, Boca Raton, p 289

    Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257. doi:10.1002/ps.993

    Article  CAS  PubMed  Google Scholar 

  • Werck-Reichhart C, Hehn A, Didierjean L (2000) Cytochrome P450 for engineering herbicide tolerance. Trends Plant Sci 5:1360–1385. doi:10.1016/S1360-1385(00)01567-3

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Spain’s Ministry of Science and Innovation (MICINN) and FEDER program for funding this work through Project AGL-2010 16774 and CTQ2012-37428. F.P.C. is also grateful to the MICINN for a Ramón y Cajal contract (RYC-2009-03921).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia María Rojano-Delgado.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojano-Delgado, A.M., Priego-Capote, F., Luque de Castro, M.D. et al. Mechanism of imazamox resistance of the Clearfield® wheat cultivar for better weed control. Agron. Sustain. Dev. 35, 639–648 (2015). https://doi.org/10.1007/s13593-014-0232-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0232-7

Keywords

Navigation