Pest control by microwave and radio frequency energy: dielectric properties of stone fruit

Abstract

Current pesticides such as methyl bromide are progressively removed from the market due to harmful residues in food. The stone fruit industries are thus seeking alternatives for postharvest control of insect pests. Microwave and radio frequency methods hold potential for postharvest thermal disinfestations of stone fruits to replace chemical fumigation. Knowledge of dielectric properties is essential for understanding the interaction between the electromagnetic fields and the target stone fruits and designing treatment beds in industrial applications. Here, we determined the dielectric properties of nectarine, peach, and plum between 10 and 1,800 MHz over a temperature range of 20–60 °C using an impedance analyzer. Our results show that the dielectric constant generally varied between 60 and 75, accounting for changes of 8–10 % due to temperature effect. But, the loss factor decreased linearly with frequency on the log scale at all temperatures for three stone fruits. The loss factor of Mediterranean fruit fly, nectarine, peach, and plum increased about 106, 108, 110, and 64 %, respectively, when the sample temperature increased from 20 to 60 °C. The penetration depth in all stone fruits decreased with increasing frequency and temperature. The loss factor ratio at 27 MHz of Mediterranean fruit fly to nectarine, peach, and plum was 1.65, 1.66, and 1.87 at 20 °C, respectively, suggesting potential differential heating between insects and host stone fruits in radio frequency treatments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. [USDA-NASS] United States Department of Agriculture-National Agricultural Statistics Service (2012) National statistics of crops. http://www.nass.usda.gov/ QuickStats/index2.jsp, Washington, DC. Accessed 12 Nov 2013

  2. AlFaifi B, Wang S, Tang J, Rasco B, Sablani S, Jiao Y (2013) Radio frequency disinfestation treatments for dried fruit: dielectric properties. LWT–Food Sci Technol 50(2):746–754. doi:10.1016/j.lwt.2012.07.012

    CAS  Google Scholar 

  3. Andreuccetti D, Bini M, Ignesti A, Gambetta A, Olmi R (1994) Microwave destruction of woodworms. J Microwave Power Electromag Ene 29(3):153–160

    Google Scholar 

  4. AOAC (2002) Fruits and fruit products. In: Official methods of analysis of the Association of Official Analytical Chemists, 17th edn (Horwitz W eds). Gaithersburg, MD, USA: AOAC: AOAC International

  5. Barba AA, Lamberti G (2013) Dielectric properties of pineapple as function of temperature and water content. Int J Food Sci Technol 48(6):1334–1338. doi:10.1111/ijfs.12092

    CAS  Article  Google Scholar 

  6. Ben-Lalli A, Bohuon P, Collignan A, Meot JM (2013) Modeling heat transfer for disinfestation and control of insects (larvae and eggs) in date fruits. J Food Eng 116(2):505–514. doi:10.1016/j.jfoodeng.2012.11.031

    Article  Google Scholar 

  7. Colpitts B, Pelletier Y, Cogswell S (1992) Complex permittivity measurements of the Colorado potato beetle using coaxial probe techniques. J Microwave Power Electromag Ene 27:175–182

    Google Scholar 

  8. El-Naggar SM, Mikhaiel AA (2011) Disinfestation of stored wheat grain and flour using gamma rays and microwave heating. J Stored Prod Res 47(3):191–196. doi:10.1016/j.jspr.2010.11.004

    Article  Google Scholar 

  9. Feng H, Tang J, Cavalieri RP (2002) Dielectric properties of dehydrated apples as affected by moisture and temperature. Trans ASAE 45(1):129–135

    Article  Google Scholar 

  10. Gao M, Tang J, Johnson JA, Wang S (2012) Dielectric properties of ground almond shells in the development of radio frequency and microwave pasteurization. J Food Eng 112(4):282–287. doi:10.1016/j.jfoodeng. 2012. 05.011

    Article  Google Scholar 

  11. Guo W, Nelson SO, Trabelsi S, Kays SJ (2007) 10-1800-MHz dielectric properties of fresh apples during storage. J Food Eng 83:562–569. doi:10.1016/j.jfoodeng.2007.04.009

    CAS  Article  Google Scholar 

  12. Guo W, Wang S, Tiwari G, Johnson JA, Tang J (2010) Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating. LWT-Food Sci Technol 43:193–201. doi:10.1016/j.lwt. 2009.07.008

    CAS  Article  Google Scholar 

  13. Guo W, Wu X, Zhu X, Wang S (2011) Temperature-dependent permittivities of chestnut and chestnut weevil from 10 to 4500 MHz. Biosystems Eng 110(3):340–347. doi:10.1016/j.biosystemseng.2011.09.007

    Article  Google Scholar 

  14. Jiao S, Johnson JA, Tang J, Tiwari G, Wang S (2011) Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments. Biosystems Eng 108(3):280–291. doi:10.1016/j.biosystemseng.2010.12.010

    Article  Google Scholar 

  15. Jiao S, Tang J, Johnson JA, Wang S (2012) Industrial-scale radio frequency treatments for insect control in lentils. J Stored Prod Res 48:143–148. doi:10.1016/j.jspr.2011.12.001

    Article  Google Scholar 

  16. Komarov V, Wang S, Tang J (2005) Permittivity and measurement. In: Chang K (ed) The Wiley encyclopedia of RF and microwave engineering, vol 4. John Wiley & Sons, Inc, New York, pp 3693–3711

    Google Scholar 

  17. Liu Y, Tang J, Mao Z (2009) Analysis of bread loss factor using modified Debye equations. J Food Eng 93:453–459. doi:10.1016/j.jfoodeng.2009.02.012

    CAS  Article  Google Scholar 

  18. Nelson SO (1996) Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans ASAE 39:1475–1484

    Article  Google Scholar 

  19. Nelson SO (2003) Frequency- and temperature-dependent permittivities of fresh fruits and vegetables from 0.0 l to 1.8 GHz. Trans ASAE 46:567–576

    Article  Google Scholar 

  20. Nelson SO (2005) Dielectric spectroscopy of fresh fruit and vegetable tissues from 10 to 1800 MHz. J Microwave Power Electrom Ene 40(1):31–47

    Google Scholar 

  21. Nelson SO, Charity LF (1972) Frequency dependence of energy absorption by insects and grain in electric fields. Trans ASAE 15(6):1099–1102

    Article  Google Scholar 

  22. Nelson SO, Payne JA (1982) RF dielectric heating for pecan weevil control. Trans ASAE 31:456–458

    Article  Google Scholar 

  23. Nelson SO, Stetson LE (1974) Comparative effectiveness of 39– and 2450–MHz electric fields for control of rice weevils in wheat. J Econ Entomol 67(5):592–595

    Google Scholar 

  24. Peng J, Tang JM, Jiao Y, Bohnet SG, Barrett DM (2013) Dielectric properties of tomatoes assisting in the development of microwave pasteurization and sterilization processes. LWT–Food Sci Technol 54(2):367–376. doi:10.1016/j.lwt.2013.07.006

    CAS  Google Scholar 

  25. Purohit P, Jayas DS, Yadav BK, Chelladurai V, Fields PG, White NDG (2013) Microwaves to control Callosobruchus maculatus in stored mung bean (Vigna radiata). J Stored Prod Res 53:19–22. doi:10.1016/j.jspr.2013.01.002

    Article  Google Scholar 

  26. Shrestha B, Baik O (2013) Radio frequency selective heating of stored-grain insects at 27.12 MHz: a feasibility study. Biosystems Eng 114:195–204. doi:10.1016/j.biosystemseng.2012.12.003

    Article  Google Scholar 

  27. Singh R, Singh KK, Kotwaliwale N (2012) Study on disinfestation of pulses using microwave technique. Food Sci Technol-MJYSORE 49(4):505–509. doi:10.1007/s13197-011-0296-1

    Article  Google Scholar 

  28. Sipaghioglu O, Barringer SA (2003) Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. J Food Sci 68(1):234–239. doi:10.1111/j.1365-2621.2003.tb14145.x

    Article  Google Scholar 

  29. Solyom K, Kraus S, Mato RB, Gaukel V, Schuchmann HP, Cocero MJ (2013) Dielectric properties of grape marc: effect of temperature, moisture content and sample preparation method. J Food Eng 119(1):33–39. doi:10.1016/j.jfoodeng.2013.05.005

    CAS  Article  Google Scholar 

  30. Sosa-Morales ME, Tiwari G, Wang S, Tang J, Lopez-Malo A, Garcia HS (2009) Dielectric heating as a potential post-harvest treatment of disinfesting mangoes. I: Relation between dielectric properties and ripening. Biosystems Eng 103(3):297–303. doi:10.1016/j.biosystemseng.2009. 02.015

    Article  Google Scholar 

  31. Sosa-Morales ME, Valerio-Junco L, Lόpez-Malo A, Garcίa HS (2010) Dielectric properties of foods: reported data in the 21st century and their potential applications. LWT–Food Sci Technol 43:1169–1179. doi:10. 1016/j.lwt.2010.03.017

  32. Tiwari G, Wang S, Birla SL, Tang J (2008) Effect of water assisted radio frequency heat treatment on the quality of ‘Fuyu’ persimmons. Biosystems Eng 100(2):227–234. doi:10.1016/j.biosystemseng.2008.03.005

    Article  Google Scholar 

  33. von Hippel AR (1954) Dielectric properties and waves. John Wiley, New York

    Google Scholar 

  34. Wang S, Tang J, Cavalieri RP, Davis D (2003a) Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments. Trans ASAE 46:1175–1182

    Google Scholar 

  35. Wang S, Tang J, Johnson JA, Mitcham E, Hansen JD, Hallman G, Drake SR, Wang Y (2003b) Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Eng 85(2):201–212. doi:10.1016/s1537-5110(03)00042-4

    Article  Google Scholar 

  36. Wang S, Monzon M, Gazit Y, Tang J, Mitcham EJ, Armstrong JW (2005) Temperature-dependent dielectric properties of selected subtropical and tropical fruit and associated insect pests. Trans ASAE 48:1873–1881

    Article  Google Scholar 

  37. Wang S, Birla SL, Tang J, Hansen JD (2006) Postharvest treatment to control codling moth in fresh apples using water assisted radio frequency heating. Postharvest Biol Technol 40(1):89–96. doi:10.1016/j.postharvbio.2005.12.005

    CAS  Article  Google Scholar 

  38. Wang S, Monzon M, Johnson JA, Mitcham EJ, Tang J (2007) Industrial-scale radio frequency treatments for insect control in walnuts: II. Insect mortality and product quality. Postharvest Biol Technol 45(2):247–253. doi:10.1016/j.postharvbio.2006.12.020

    Article  Google Scholar 

  39. Wang S, Tang J, Johnson JA, Cavalieri RP (2013a) Heating uniformity and differential heating of insects in almonds associated with radio frequency energy. J Stored Prod Res 55:15–20. doi:10.1016/j.jspr.2013.06.003

    CAS  Article  Google Scholar 

  40. Wang Y, Zhang L, Gao M, Tang J, Wang S (2013b) Temperature-and moisture-dependent dielectric properties of Macadamia nut kernels. Food Bioproc Technol 6(8):2165–2176. doi:10.1007/s11947-012-0898-2

    CAS  Article  Google Scholar 

  41. Zhu XH, Guo WC, Wu XL (2012) Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. J Food Eng 109(2):258–266. doi:10.1016/j.jfoodeng.2011.10.005

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was conducted in the Department of Biological Systems Engineering, Washington State University (WSU), supported by grants from WSU Agricultural Research Centre, and partially provided by the general program of the National Natural Science Foundation of China (No. 31371853).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaojin Wang.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ling, B., Tiwari, G. & Wang, S. Pest control by microwave and radio frequency energy: dielectric properties of stone fruit. Agron. Sustain. Dev. 35, 233–240 (2015). https://doi.org/10.1007/s13593-014-0228-3

Download citation

Keywords

  • Dielectric properties
  • Differential heating
  • Disinfestations
  • Open-ended coaxial probe
  • Stone fruit