Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 195–202 | Cite as

Improved wheat grain yield by a new method of root selection

  • Anna Heřmanská
  • Tomáš Středa
  • Oldřich Chloupek
Research Article


Wheat is a major source of protein for human food, a critical issue at a time when mankind is growing by 77 million people per year. Wheat was domesticated approximately 10,000 years ago and has been systematically bred for about 200 years. However, this breeding selection has been done using only aerial plant parts. Indeed, wheat roots, the hidden half of plant, were not considered in breeding programs due to the lack of an appropriate method. Here, we evaluated roots of 18 wheat populations. The root system size was measured by its electrical capacitance directly in field. The plants in third and fourth generations were evaluated during shooting and heading. Then plants were selected for large and small root system. In dry conditions, progeny of plants with large and small root system had yields of 17.1 and 10.9 g per plant in the third generation and 18.5 and 10.0 g per plant in the fourth generation. Our results show that the progeny of the plants selected for large roots have larger roots than their parents, also in next generation. Similarly, the progeny of small root plants have smaller roots. The selection process showed a greater response for larger root system size. This response can be evolutionarily advantageous and make selection easier than, for example, selection for grain yield. Our unique method enables accurate, repeated evaluation and harvest of selected plants. Selection for higher wheat root system size can be easily used to breed for drought tolerance and higher efficiency of water and fertilizer use.


Winter wheat Selection response Root system size Electrical capacitance Drought tolerance 



This work was supported by a project of the Ministry of Agriculture of the Czech Republic, QI111C080.


  1. Bodner G, Himmelbauer M, Loiskandl W, Kaul H-P (2010) Improved evaluation of cover crop species by growth and root factors. Agron Sustain Dev 30:455–464. doi: 10.1051/agro/2009029 CrossRefGoogle Scholar
  2. Chloupek O (1972) The relationship between electric capacitance and some other parameters of plant roots. Biol Plant 14:227–230. doi: 10.1007/BF02921255 CrossRefGoogle Scholar
  3. Chloupek O, Forster BP, Thomas WTB (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112:779–786. doi: 10.1007/s00122-005-0147-4 PubMedCrossRefGoogle Scholar
  4. Chloupek O, Dostál V, Středa T, Psota V, Dvořáčková O (2010) Drought tolerance of barley varieties in relation to their root system size. Plant Breed 129:630–636. doi: 10.1111/j.1439-0523.2010.01801.x CrossRefGoogle Scholar
  5. Cseresnyés I, Fekete G, Végh KR, Székács A, Mörtl M, Rajkai K (2012) Monitoring of herbicide effect in maize based on electrical measurements. Int Astrophys 26:243–247. doi: 10.2478/v10247-012-0036-4 Google Scholar
  6. Curtis BC, Rajaram S, Gómez Macpherson H (2002) Bread wheat. Improvement and production. FAO Plant Production and Protection Series No. 30. FAO, RomeGoogle Scholar
  7. Dalton FN (1995) In-situ root extent measurements by electrical capacitance methods. Plant Soil 173:157–165. doi: 10.1007/BF00155527 CrossRefGoogle Scholar
  8. Dietrich RC, Bengough AG, Jones HG, White PJ (2012) A new physical interpretation of plant root capacitance. J Exp Bot 63:6149–6159. doi: 10.1093/jxb/ers264 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dietrich RC, Bengough AG, Jones HG, White PJ (2013) Can root electrical capacitance be used to predict root mass in soil? Ann Bot 112:457–464. doi: 10.1093/aob/mct044 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dvořák M, Černohorská J, Janáček K (1981) Characteristics of current passage through plant tissue. Biol Plant 23:306–310. doi: 10.1007/BF02895374 CrossRefGoogle Scholar
  11. Ebrahimi E, Bodner G, Kaul H-P, Dabbaqh A (2013) Effects of water supply on roots traits and biological yield of Durum (Triticum durum Desf.) and Khorasan (Triticum turanicum Jakubz) wheat. Plant Biosyst. doi: 10.1080/11263504.2013.850120 Google Scholar
  12. Ehdaie B, Merhaut DJ, Ahmadian S, Hoops AC, Khuong T, Layne AP, Waines JG (2010) Root system size influences water-nutrient uptake and nitrate leaching potential in wheat. J Agron Crop Sci 196:455–466. doi: 10.1111/j.1439-037X.2010.00433.x CrossRefGoogle Scholar
  13. Ellis T, Murray W, Kavalieris L (2013) Electrical capacitance of bean (Vicia faba) root systems was related to tissue density—a test for the Dalton Model. Plant Soil 366:575–584. doi: 10.1007/s11104-012-1424-z CrossRefGoogle Scholar
  14. Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman, Harlow, 438 pGoogle Scholar
  15. Fasoula VA, Tokatlidis IS (2012) Development of crop cultivars by honeycomb breeding. Agron Sustain Dev 32:161–180. doi: 10.1007/s13593-011-0034-0 CrossRefGoogle Scholar
  16. Gonzalez-Dugo V, Durand J-L, Gastal F (2010) Water deficit and nitrogen nutrition of crops. A review. Agron Sustain Dev 30:529–544. doi: 10.1051/agro/2009059 CrossRefGoogle Scholar
  17. Guegan Q, Foulc J-N (2009) Electrical characterization of the solid phase (particles) of electrorheological fluids. 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions. J Phys Conf Ser 149, 012006. doi: 10.1088/1742-6596/149/1/012006
  18. Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crop Res 143:18–33. doi: 10.1016/j.fcr.2012.05.014 CrossRefGoogle Scholar
  19. IUSS Working Group WRB (2007) World reference base for soil resources 2006, first update. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  20. King J, Gay A, Sylvester-Bradley R, Bingham I, Foulkes J, Gregory P, Robinson D (2003) Modelling cereal root systems for water and nitrogen capture: towards an economic optimum. Ann Bot 91:383–390. doi: 10.1093/aob/mcg033 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Li H, Liu L, Wang Z, Yang J, Zhang J (2012) Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crop Res 133:119–129. doi: 10.1016/j.fcr.2012.04.005 CrossRefGoogle Scholar
  22. Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut J-M (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crop Res 124:93–103. doi: 10.1016/j.fcr.2011.06.010 CrossRefGoogle Scholar
  23. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69:3561–3566. doi: 10.1073/pnas.69.12.3561 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Palta JA, Chen X, Milroy SP, Rebetzke GJ, Dreccer MF, Watt M (2011) Large root systems: are they useful in adapting wheat to dry environments? Funct Plant Biol 38:347–354. doi: 10.1071/FP11031 CrossRefGoogle Scholar
  25. Patel PM, Bhat A, Markx GH (2008) A comparative study of cell death using electrical capacitance. Enzym Microb Technol 43:523–530. doi: 10.1016/j.enzmictec.2008.09.006 CrossRefGoogle Scholar
  26. Richards RA (2008) Genetic opportunities to improve cereal root systems for dry land agriculture. Plant Prod Sci 11:12–16. doi: 10.1626/pps.11.12 CrossRefGoogle Scholar
  27. Schwan HP, Kay CF (1957) Capacitive properties of body tissues. Circ Res 5:439–443. doi: 10.1161/01.RES.5.4.439 PubMedCrossRefGoogle Scholar
  28. Středa T, Dostál V, Horáková V, Chloupek O (2012) Effective use of water by wheat varieties with different root system sizes in rain-fed experiments in Central Europe. Agric Water Manag 104:203–209. doi: 10.1016/j.agwat.2011.12.018 CrossRefGoogle Scholar
  29. Svačina P, Středa T, Chloupek O (2014) Uncommon selection by root system size increases barley yield. Agron Sustain Dev 34:545–551. doi: 10.1007/s13593-013-0160-y
  30. Ullmannová K, Středa T, Chloupek O (2013) Use of barley seed vigour to discriminate drought and cold tolerance in crop years with high seed vigour and low trait variation. Plant Breed 132:295–298. doi: 10.1111/pbr.12065 CrossRefGoogle Scholar
  31. Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot 100:991–998. doi: 10.1093/aob/mcm180 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Walker JM (1965) Electrical A. C. resistance and capacitance of Zea mays L. Plant Soil 23:270–274. doi: 10.1007/BF01358354 CrossRefGoogle Scholar
  33. Zhang MIN, Repo T, Willison JHM, Sutinen S (1995) Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Cole α in Scots pine needles. Eur Biophys J 24:99–106. doi: 10.1007/BF00211405 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Anna Heřmanská
    • 1
  • Tomáš Středa
    • 2
  • Oldřich Chloupek
    • 2
  1. 1.Plant Breeding StationSELGENÚhřeticeCzech Republic
  2. 2.Mendel University in BrnoBrnoCzech Republic

Personalised recommendations