Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 225–232 | Cite as

Humic substances from vermicompost enhance urban lettuce production

  • Orlando L. Hernandez
  • Andrés Calderín
  • Rafael Huelva
  • Dariellys Martínez-Balmori
  • Fernando Guridi
  • Natália O. Aguiar
  • Fábio L. Olivares
  • Luciano Pasqualoto Canellas
Research Article

Abstract

Urban agriculture is growing worldwide with the growth of cities. Urban agriculture represents about 20 % of Cuban agriculture. In Cuba, urban agriculture is institutionalized and organized with ecological principles. For instance, local agriculture enhances food security and decreases the use of nonrenewable fertilizers. However, organic crop production in urban environments is challenging because of intensive plant nutrient requirements and disease incidence. Here, we tested an innovative technology based on plant growth promoters isolated from vermicompost and applied directly to lettuce leaves. We monitored plant metabolism by measuring the activities of nitrate reductase, an enzyme linked to N assimilation, and of phenylalanine ammonia lyase, an enzyme linked to plant defense. The experiment was conducted in the organic urban system in Guines, Cuba. We applied liquid humates at 10, 15, or 20 mg C L−1 once at the seedling stage and again 15 days after transplantation. Our results show that humates at 15 mg C L−1 shortened by 21 days the lettuce production cycle, allowing early harvesting without changing quality while increasing yields expressed as the number of leaves per plant. Humate application also decreased total carbohydrate, increased protein, increased nitrate uptake, and stimulated nitrate reductase and phenylalanine ammonia lyase in lettuce leaves.

Keywords

Humic substances Physiological effects Organic agriculture Urban agriculture Nitrogen metabolism Biostimulant 

Notes

Acknowledgments

We thank CAPES/MES (AUX-PE 1760/2010) for making possible the international scientific cooperation between Brazil and Cuba. FAPERJ, CNPq, and INCT for Biological Nitrogen Fixation provided financial support. This paper is written in memory of Orlando Hernandez.

References

  1. Aguiar NO, Olivares FL, Novotny EH, Dobbss LB, Balmori DM, Santos-Júnior LG, Chagas JG, Façanha AR, Canellas LP (2013) Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant Soil 362:161–174. doi: 10.1007/s11104-012-1277-5 CrossRefGoogle Scholar
  2. Ali M, Griffiths AJ, Williams KP, Jones DL (2007) Evaluating the growth characteristics of lettuce in vermicompost and green waste compost. Eur J Soil Biol 43:S316–S319. doi: 10.1016/j.ejsobi.2007.08.045 CrossRefGoogle Scholar
  3. Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. doi: 10.1007/s13593-011-0065-6 CrossRefGoogle Scholar
  4. Arancon NQ, Edwards CA, Atiyeh R, Metzger JD (2004) Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Biores Technol 93:139–144. doi: 10.1016/j.biortech.2003.10.015 CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  6. Canellas LP, Okorokova-Façanha A, Olivares FL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957. doi: 10.1104/pp. 007088 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Canellas LP, Martinez-Balmori D, Médici LO, Aguiar NO, Campostrini E, Rosa RCC, Façanha AR, Olivares FL (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366:119–132. doi: 10.1007/s11104-012-1382-5 CrossRefGoogle Scholar
  8. Cataldo D, Mingguang AR (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–90. doi: 10.1080/00103624.2012.631417 CrossRefGoogle Scholar
  9. Cavalcante IHL, Silva RRS DA, Albano FG, Lima FN, Marques AS (2011) Foliar spray of humic substances on seedling production of papaya. JAgron 10(4):118–122Google Scholar
  10. Claro SA (2001) Referenciais tecnológicos para a agricultura familiar ecológica: a experiência da região Centro-Serra do Rio Grande do Sul. Emater/RS-Ascar, Porto Alegre, p 75pGoogle Scholar
  11. Cooper RJ, Liu C, Fisher DS (1998) Influence of humic substances on rooting and nutrient content of creeping bentgrass. Crop Sci 38(6):1639–1644. doi: 10.2135/cropsci1998.0011183X003800060037x CrossRefGoogle Scholar
  12. Delfine S, Tognetti R, Desiderio R, Alvino A (2005) Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron Sustain Dev 25:183–191. doi: 10.1051/agro:2005017 CrossRefGoogle Scholar
  13. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. doi: 10.1105/tpc.7.7.1085 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Edwards CA, Arancon NQ, Graytak S (2006) Effects of vermicompost teas on plant growth and disease. Biocycle 47:28–31Google Scholar
  15. Femández-Escobar R, Benlloch M, Barranco D, Duefias A, Gutérrez Ganán JA (1996) Response of olive trees to folk application of humic substances extracted from leonardite. Sci Hort 66:191–200CrossRefGoogle Scholar
  16. Glass ADM, Shaff JE, Kochian LV (1992) Studies on the uptake of nitrate in barley. Electrophysiology. Plant Physiol 99:456–463. doi: 10.1104/pp. 99.2.456 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jaworsky EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279. doi: 10.1016/S0006-291X(71)80010-4 CrossRefGoogle Scholar
  18. Karakurt Y, Unlu H, Unlu H, Huseyin Padem H (2009) The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric Scand Sect B Soil Plant Sci 59(3):233–237. doi: 10.1080/09064710802022952 Google Scholar
  19. Lopes CA, Quezado-Duval AM (1998) Doenças da alface. Embrapa Hortaliças, Brasília, p 18pGoogle Scholar
  20. Morsomme P, Boutry M (2000) The plant plasma-membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta 1465:1–16. doi: 10.1016/S0005-2736(00)00128-0 PubMedCrossRefGoogle Scholar
  21. Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol Biochem 39(12):3138–3146. doi: 10.1016/j.soilbio.2007.07.006 CrossRefGoogle Scholar
  22. Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) A biological activities of humic substances. In: Senesi N, Xing B, Huang P (eds) Biophysico-chemical processes involving natural non living organic matter in environmental systems. Wiley, New Jersey, pp 305–340CrossRefGoogle Scholar
  23. Pizzeghello D, Nicolini G, Nardi S (2001) Hormone-like activity of humic substances in Fagus sylvatica forests. New Phytol 151(3):647–657. doi: 10.1046/j.0028-646x.2001.00223.x CrossRefGoogle Scholar
  24. Plummer DT (1981) Introducción a la bioquímica práctica. http://www.bioquimica.dogsleep.net/Laboratorio/Plummer. Accessed 12 august 2012
  25. Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi, S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813. doi: 10.1093/jxb/erh085
  26. Ricci MSF, Casali VW, Cardoso AA, Ruiz HA (1995) Teores de nutrientes em duas cultivares de alface adubadas com composto orgânico. Pesq Agropec Bras 30:1035–1039. doi: 10.1590/S0102-05362006000200004 Google Scholar
  27. Rodda MRC, Canellas LP, Façanha AR, Zandonadi DB, Guerra JGM, Almeida DL, Santos GA (2006) Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto: I - efeito da concentração. R Bras Ci Solo 30:649–656. doi: 10.1590/S0100-06832006000400006 CrossRefGoogle Scholar
  28. Saldana LH, Rivera-Hinojosa R, Colinas-León MT (2007) Fenoles, peroxidasa y fenilalanina amonio-lyasa: su relación con la resistencia genética de clones de papa (Solamun tuberosum L.) contra el tizón tardío (Phytophthora infestans Mont. De Bary). Agrociencia 41:479–489Google Scholar
  29. Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669. doi: 10.1007/s10886-010-9790-6 PubMedCrossRefGoogle Scholar
  30. Šesták Z (1966) Limitations for finding a linear relationship between chlorophyll content and photosynthetic activity. Biol Plant 8:336–346CrossRefGoogle Scholar
  31. Singh R, Gupta RK, Patil RT, Sharma RR, Asrey R, Kumar A, Jangra KK (2010) Sequential foliar application of vermicompost leachates improves marketable fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Sci Hort 124:34–39. doi: 10.1016/j.scienta.2009.12.002 CrossRefGoogle Scholar
  32. Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689. doi: 10.1105/tpc.11.4.677 PubMedCentralPubMedGoogle Scholar
  33. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York, p 371pGoogle Scholar
  34. Tejada M, Gonzalez JL, Hernandez MT, Garcia C (2008) Agricultural use of leachates obtained from two different vermicomposting processes. Biores Technol 99:6228–6232. doi: 10.1016/j.biortech.2007.12.031 CrossRefGoogle Scholar
  35. Warman PR, Anglopez MJ (2010) Vermicompost derived from different feedstocks as a plant growth medium. Biores Technol 101:4479–4483. doi: 10.1016/j.biortech.2010.01.098 CrossRefGoogle Scholar
  36. Yeomans JC, Bremner J (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476. doi: 10.1080/00103628809368027 CrossRefGoogle Scholar
  37. Yildirim E (2007) Foliar and soil fertilization of humic acid affect productivity and quality of tomato Acta Agric Scandinavica. Section B Soil Plant Sci 57(2):182–186. doi: 10.1080/09064710600813107 Google Scholar
  38. Zaller JG (2006) Foliar spraying of vermicornpost extracts: effects on fruit quality and indications of late-blight suppression of field-grown tomatoes. Biol Agric Hortic 24(2):160–185. doi: 10.1080/01448765.2006.9755017 CrossRefGoogle Scholar
  39. Zaller JG (2007) Vermicompost in seedling potting media can affect germination, biomass allocation, yields and fruit quality of three tomato varieties. Eur J Soil Biol 43:S332–S336. doi: 10.1016/j.ejsobi.2007.08.020 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Orlando L. Hernandez
    • 1
  • Andrés Calderín
    • 1
  • Rafael Huelva
    • 1
  • Dariellys Martínez-Balmori
    • 1
  • Fernando Guridi
    • 1
  • Natália O. Aguiar
    • 2
  • Fábio L. Olivares
    • 2
  • Luciano Pasqualoto Canellas
    • 2
  1. 1.Departamento de Química, Facultad de AgronomíaUniversidad Agraria de La Habana “Fructuoso Rodríguez Pérez” UNAHSan José de las LajasCuba
  2. 2.Núcleo de Desenvolvimento de Insumos Biológicos para Agriculturada Universidade Estadual do Norte Fluminense Darcy RibeiroRio de JaneiroBrazil

Personalised recommendations