Advertisement

Agronomy for Sustainable Development

, Volume 34, Issue 2, pp 443–454 | Cite as

Soil organic carbon sequestration in agroforestry systems. A review

  • Klaus Lorenz
  • Rattan Lal
Review Article

Abstract

The increase in atmospheric carbon dioxide (CO2) concentrations due to emissions from fossil fuel combustion is contributing to recent climate change which is among the major challenges facing the world. Agroforestry systems can contribute to slowing down those increases and, thus, contribute to climate change mitigation. Agroforestry refers to the production of crop, livestock, and tree biomass on the same area of land. The soil organic carbon (SOC) pool, in particular, is the only terrestrial pool storing some carbon (C) for millennia which can be deliberately enhanced by agroforestry practices. Up to 2.2 Pg C (1 Pg = 1015 g) may be sequestered above- and belowground over 50 years in agroforestry systems, but estimations on global land area occupied by agroforestry systems are particularly uncertain. Global areas under tree intercropping, multistrata systems, protective systems, silvopasture, and tree woodlots are estimated at 700, 100, 300, 450, and 50 Mha, respectively. The SOC storage in agroforestry systems is also uncertain and may amount up to 300 Mg C ha−1 to 1 m depth. Here, we review and synthesize the current knowledge about SOC sequestration processes and their management in agroforestry systems. The main points are that (1) useful C sequestration in agroforestry systems for climate change mitigation must slow or even reverse the increase in atmospheric concentration of CO2 by storing some SOC for millennia, (2) soil disturbance must be minimized and tree species with a high root biomass-to-aboveground biomass ratio and/or nitrogen-fixing trees planted when SOC sequestration is among the objectives for establishing the agroforestry system, (3) sequestration rates and the processes contributing to the stabilization of SOC in agroforestry soils need additional data and research, (4) retrospective studies are often missing for rigorous determination of SOC and accurate evaluation of effects of different agroforestry practices on SOC sequestration in soil profiles, and (5) the long-term SOC storage is finite as it depends on the availability of binding sites, i.e., the soil’s mineral composition and depth. Based on this improved knowledge, site-specific SOC sequestering agroforestry practices can then be developed.

Keywords

Agroforestry systems Carbon sequestration Soil organic carbon Climate change mitigation Root-derived carbon 

Notes

Acknowledgments

Klaus Lorenz greatly acknowledges the research fellowship granted by “Bundesministerium für Bildung und Forschung” and its platform “Forschung für Nachhaltigkeit”, and by “Ministerium für Wissenschaft, Forschung und Kultur, Land Brandenburg.”

References

  1. Ajayi OC, Place F, Akinnifesi FK, Sileshi GW (2011) Agricultural success from Africa: the case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). Int J Agric Sustain 9:129–136. doi: 10.3763/ijas.2010.0554 Google Scholar
  2. Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27. doi: 10.1016/S0167-8809(03)00138-5 Google Scholar
  3. Albrecht A, Cadisch G, Blanchart E, Sitompul SM, Vanlauwe B (2004) Below-ground inputs: relationships with soil quality, soil C storage and soil structure. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems—concepts and models with multiple plant components. CABI, Wallingford, pp 193–207Google Scholar
  4. Amézquita MC, Ibrahim M, Llanderal T, Buurman P, Amézquita E (2005) Carbon sequestration in pastures, silvopastoral systems and forests in four regions of the Latin American tropics. J Sustain For 21:31–49. doi: 10.1300/J091v21n01 Google Scholar
  5. Anderson EK, Zerriffi H (2012) Seeing the trees for the carbon: agroforestry for development and carbon mitigation. Clim Chang 115:741–757. doi: 10.1007/s10584-012-0456-y Google Scholar
  6. Beer J, Bonnemann A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. Agrofor Syst 12:229–249. doi: 10.1007/BF00137286 Google Scholar
  7. Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241. doi: 10.1890/08-1730.1 PubMedGoogle Scholar
  8. Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75. doi: 10.1016/B978-0-12-385531-2.00001-3 Google Scholar
  9. Burgess PJ, Incoll LD, Corry DT, Beaton A, Hart BJ (2004) Poplar (Populus spp) growth and crop yields in a silvoarable experiment at three lowland sites in England. Agrofor Syst 63:157–169. doi: 10.1007/s10457-004-7169-9 Google Scholar
  10. Cubbage F, Balmelli G, Bussoni A, Noellemeyer E, Pachas AN, Fassola H, Colcombet L, Rossner B, Frey G, Dube F, de Silva ML, Stevenson H, Hamilton J, Hubbard W (2013) Comparing silvopastoral systems and prospects in eight regions of the world. Agrofor Syst 86:303–314. doi: 10.1007/s10457-012-9582-z Google Scholar
  11. Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, The LIDET Team (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Chang Biol 15:1339–1355. doi: 10.1111/j.1365-2486.2008.01781.x Google Scholar
  12. da Silva EV, de Moraes Gonçalves JL, de Frietas Coelho SR, Moreira RM, de Miranda Mello SL, Bouillet JP, Jourdan C, Laclau J-P (2009) Dynamics of fine root distribution after establishment of monospecific and mixed-species plantations of Eucalyptus grandis and Acacia mangium. Plant Soil 325:305–318. doi: 10.1007/s11104-009-9980-6 Google Scholar
  13. Denef K, Six J (2006) Contributions of incorporated residue and living roots to aggregate-associated and microbial carbon in two soils with different clay mineralogy. Eur J Soil Sci 57:774–786. doi: 10.1111/j.1365-2389.2005.00762.x Google Scholar
  14. Dixon RK (1995) Agroforestry systems: sources or sinks of greenhouse gases? Agrofor Syst 31:99–116. doi: 10.1007/BF00711719 Google Scholar
  15. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol 17:1658–1670. doi: 10.1111/j.1365-2486.2010.02336.x Google Scholar
  16. Ewing SA, Sandermann J, Baisden WT, Wang Y, Amundson R (2006) Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. J Geophys Res 111, G03012. doi: 10.1029/2006JG000174 Google Scholar
  17. FAO (2009) Enabling agriculture to contribute to climate change mitigation. The Food and Agriculture Organization of the United Nations, Rome, FAO submission to the UNFCCCGoogle Scholar
  18. Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manag 45:274–283. doi: 10.1007/s00267-009-9420-7 Google Scholar
  19. Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717. doi: 10.1016/j.soilbio.2010.04.006 Google Scholar
  20. Gentile R, Vanlauwe B, Six J (2011) Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecol Appl 21:695–703PubMedGoogle Scholar
  21. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360Google Scholar
  22. Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456. doi: 10.1111/j.1469-8137.2007.02242.x PubMedGoogle Scholar
  23. Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797. doi: 10.2134/jeq2007.0509 PubMedGoogle Scholar
  24. Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Global Chang Biol 16:427–438. doi: 10.1111/j.1365-2486.2009.01981.x Google Scholar
  25. Horwath W (2007) Carbon cycling and formation of soil organic matter. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Academic, Burlington, pp 303–339Google Scholar
  26. Inderjit, Malik AU (2002) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser-Verlag, BerlinGoogle Scholar
  27. IPCC (2000) Land use, land-use change, and forestry. Cambridge University Press, Cambridge, p 375, A special report of the IPCCGoogle Scholar
  28. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  29. Isaac ME, Gordon AM, Thevathasan NV, Oppong SK, Quashi-Sam J (2005) Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agrofor Syst 65:23–31. doi: 10.1007/s10457-004-4187-6 Google Scholar
  30. Jandl R, Lindner M, Vesterdahl L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi: 10.1016/j.geoderma.2006.09.003 Google Scholar
  31. Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, van Wesemael B, Harrison RB, Guerrini IA, de Richter DD, Rustad L, Lorenz K, Chabbi A, Miglietta F (2014) Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ 468–469:376–383. doi: 10.1016/j.scitotenv.2013.08.026 PubMedGoogle Scholar
  32. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436Google Scholar
  33. John J, Patil RH, Joy M, Nair AM (2006) Methodology of allelopathy research: 1. Agroforestry systems. Allelopathy J 18:173–214Google Scholar
  34. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238Google Scholar
  35. Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636. doi: 10.2134/agronj2005.0179 Google Scholar
  36. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33. doi: 10.1007/s11104-009-9925-0 Google Scholar
  37. Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: an overview. Agrofor Syst 86:105–111. doi: 10.1007/s10457-012-9573-x Google Scholar
  38. Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61:237–255. doi: 10.1023/B:AGFO.0000029002.85273.9b Google Scholar
  39. Kell DB (2012) Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philos Trans R Soc B 367:1589–1597. doi: 10.1098/rstb.2011.0244 Google Scholar
  40. Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grûnwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moor E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Chang Biol 17:1167–1185. doi: 10.1111/j.1365-2486.2010.02282.x Google Scholar
  41. Kizito F, Dragila M, Sène M, Lufafa A, Diedhiou I, Dick RP, Selker JS, Dossa E, Khouma M, Badiane A, Ndiaye S (2006) Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with Pearl millet in Senegal, West Africa. J Arid Environ 67:436–455. doi: 10.1016/j.jaridenv.2006.02.021 Google Scholar
  42. Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Chang Biol 17:1097–1107. doi: 10.1111/j.1365-2486.2010.02278.x Google Scholar
  43. Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. doi: 10.1002/jpln.200700048 Google Scholar
  44. Kohli RK, Singh HP, Batish DR, Jose S (2008) Ecological interactions in agroforestry: an overview. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, pp 3–14Google Scholar
  45. Krna MA, Rapson GL (2013) Clarifying ‘carbon sequestration’. Carbon Manag 4:309–322Google Scholar
  46. Laganière J, Angers D, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453. doi: 10.1111/j.1365-2486.2009.01930.x Google Scholar
  47. Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sustain For 21:1–30. doi: 10.1300/J091v21n01_01 Google Scholar
  48. Lal R, Follett RF (2009) Soils and climate change. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect. SSSA Special Publication 57, 2nd edn. Madison, WI, xxi-xxviiiGoogle Scholar
  49. Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. doi: 10.1111/j.1469·8137,2012.04150.x PubMedGoogle Scholar
  50. Liste HH, White JC (2008) Plant hydraulic lift of soil water—implications for crop production and land restoration. Plant Soil 313:1–17. doi: 10.1007/s11104-008-9696-z Google Scholar
  51. Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66. doi: 10.1016/S0065-2113(05)88002-2 Google Scholar
  52. Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, DordrechtGoogle Scholar
  53. Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, Keith H, Berry S (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Chang 3:552–557. doi: 10.1038/NCLIMATE1804 Google Scholar
  54. Matocha J, Schroth G, Hills T, Hole D (2012) Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 105–126Google Scholar
  55. Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. doi: 10.1016/j.cosust.2013.09.002 Google Scholar
  56. Meinen C, Hertel D, Leuschner C (2009) Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems 12:1103–1116. doi: 10.1007/s10021-009-9271-3 Google Scholar
  57. Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM (2010) The ecological engineering impact of a single tree species on the soil microbial community. J Ecol 98:50–61. doi: 10.1111/j.1365-2745.2009.01601.x Google Scholar
  58. Mosquera-Losada MR, Ferreiro-Domínguez N, Rigueiro-Rodríguez A (2010) Fertilization in pastoral and Pinus radiata D. Don silvopastoral systems developed in forest and agronomic soils of Northwest Spain. Agric Ecosyst Environ 139:618–628Google Scholar
  59. Nair PKR (2012a) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:243–253. doi: 10.1007/s10457-011-9434-z Google Scholar
  60. Nair PKR (2012b) Climate change mitigation: a low-hanging fruit of agroforestry. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 31–67Google Scholar
  61. Nair PKR, Garrity D (2012) Agroforestry research and development: the way forward. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 515–531Google Scholar
  62. Nair PKR, Nair VD (2014) ‘Solid–fluid–gas’: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Curr Opin Environ Sustain 6:22–27. doi: 10.1016/j.cosust.2013.07.014 Google Scholar
  63. Nair PKR, Gordon AM, Mosquera-Losada MR (2008) Agroforestry. In: Jorgensen SE, Fath BD (eds) Ecological engineering, encyclopedia of ecology, vol. 1. Elsevier, Oxford, pp 101–110Google Scholar
  64. Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. doi: 10.1002/jpln.200800030 Google Scholar
  65. Nair PKR, Nair V, Gama-Rodrigues E, Garcia R, Haile S, Howlett D, Kumar BM, Mosquera-Losada MR, Saha S, Takimoto A, Tonucci R (2009b) Soil carbon in agroforestry systems: an unexplored treasure?. Available from Nature Proceedings <http://hdl.handle.net/10101/npre.2009.4061.1> (2009)
  66. Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307. doi: 10.1016/S0065-2113(10)08005-3 Google Scholar
  67. Nepstad DC, De Carvalhot CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669Google Scholar
  68. Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlönvoigt AM, Thevathasan NV (2006) Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agrofor Syst 68:27–36. doi: 10.1007/s10457-005-5963-7 Google Scholar
  69. Ong CK, Kho RM, Radersma S (2004) Ecological interactions in multispecies agroecosystems: concepts and rules. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, pp 1–15Google Scholar
  70. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257. doi: 10.1016/S0378-1127(01)00740-X Google Scholar
  71. Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257. doi: 10.1007/s10457-005-0361-8 Google Scholar
  72. Perry CH, Woodall CW, Liknes GC, Schoeneberger MM (2008) Filling the gap: improving estimates of working tree resources in agricultural landscapes. Agrofor Syst 75:91–101. doi: 10.1007/s10457-008-9125-6 Google Scholar
  73. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Chang 2:2–4. doi: 10.1038/nclimate1332 Google Scholar
  74. Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2 °C. Nat Clim Chang 3:4–6. doi: 10.1038/nclimate1783 Google Scholar
  75. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Chang Biol 17:2415–2427. doi: 10.1111/j.1365-2486.2011.02408.x Google Scholar
  76. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. doi: 10.1046/j.1365-2486.2000.00308.x Google Scholar
  77. Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55. doi: 10.1111/j.1365-2389.2010.01342.x Google Scholar
  78. Preston CM, Nault JR, Trofymow JA (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12:1078–1102. doi: 10.1007/s10021-009-9267-z Google Scholar
  79. Preston CM, Nault JR, Trofymow JA, Smyth C, Working Group CIDET (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053–1077. doi: 10.1007/s10021-009-9266-0 Google Scholar
  80. Rao MR, Schroth G, Williams SE, Namirembe S, Schaller M, Wilson J (2004) Managing below-ground interactions in agroecosystems. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, pp 309–328Google Scholar
  81. Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356. doi: 10.1007/s11104-004-0907-y Google Scholar
  82. Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231. doi: 10.1007/s10021-001-0067-3 Google Scholar
  83. Rigueiro-Rodríguez A, Fernández-Núñez E, González-Hernández P, McAdam JH, Mosquera-Losada MR (2009) Agroforestry systems in Europe: productive, ecological and social perspectives. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Current status and future prospects. Springer, Dordrecht, pp 43–66Google Scholar
  84. Ritter E (2007) Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland. Plant Soil 295:239–251. doi: 10.1007/s11104-007-9279-4 Google Scholar
  85. Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A (1999) Allelopathic interactions in agroforestry systems. Crit Rev Plant Sci 19:773–796. doi: 10.1080/07352689991309487 Google Scholar
  86. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi: 10.1007/s11104-010-0391-5 Google Scholar
  87. Saha SK, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76:53–65. doi: 10.1007/s10457-009-9228-8 Google Scholar
  88. Saha SK, Nair PKR, Nair VD, Kumar BM (2010) Carbon storage in relation to soil size-fractions under tropical tree-based land-use systems. Plant Soil 328:433–446. doi: 10.1007/s11104-009-0123-x Google Scholar
  89. Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture—a report prepared for Department of Climate Change and Energy Efficiency, CSIRO Land and Water. http://www.csiro.au/resources/Soil-Carbon-Sequestration-Potential-Report.html
  90. Scherer-Lorenzen M, Potvin C, Koricheva J, Schmid B, Hector A, Bornik Z, Reynolds G, Schulze E-D (2005) The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Ecological studies, vol 176. Springer, Berlin, pp 347–376Google Scholar
  91. Scheu S, Schauermann J (1994) Decomposition of roots and twigs: effects of wood type (beech and ash), diameter, site of exposure and macrofauna exclusion. Plant Soil 241:155–176. doi: 10.1007/BF00033936 Google Scholar
  92. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi: 10.1038/nature10386 PubMedGoogle Scholar
  93. Schoeneberger M, Bentrup G, de Gooijer H, Soolanayakanahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conserv 67:128A–136A. doi: 10.2489/jswc.67.5.128A Google Scholar
  94. Schroth G (1999) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43:5–34Google Scholar
  95. Schroth G, Zech W (1995) Above- and below-ground biomass dynamics in a sole cropping and an alley cropping system with Gliricidia sepium in the semi-deciduous rainforest zone of West Africa. Agrofor Syst 31:181–198Google Scholar
  96. Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after seven years. For Ecol Manag 163:131–150Google Scholar
  97. Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691. doi: 10.5194/bg-10-1675-2013 Google Scholar
  98. Shi S, Zhang W, Zhang P, Yu Y, Ding F (2013) A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For Ecol Manag 296:53–63. doi: 10.1016/j.foreco.2013.01.026 Google Scholar
  99. Sileshi G, Akinnifesi FK, Ajayi OC, Chakeredza S, Kaonga M, Matakala PW (2007) Contribution of agroforestry to ecosystem services in the Miombo eco-region of eastern and southern Africa. Afr J Environ Sci Technol 4:68–80Google Scholar
  100. Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. doi: 10.1016/S0038-0717(00)00179-6 Google Scholar
  101. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813. doi: 10.1098/rstb.2007.2184 Google Scholar
  102. Sollins P, Swanston C, Kramer M (2007) Stabilization and destabilization of soil organic matter—a new focus. Biogeochemistry 85:1–7. doi: 10.1007/s10533-007-9099-x Google Scholar
  103. Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51. doi: 10.1007/s10457-009-9247-5 Google Scholar
  104. Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96. doi: 10.1007/s13593-012-0081-1 Google Scholar
  105. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Remy de Courcelles V, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. doi: 10.1016/j.agee.2012.10.001 Google Scholar
  106. Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of natural organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 219–272Google Scholar
  107. U.S. Department of Energy (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science, report from the March 2008 Workshop, DOE/SC-108, U.S. Department of Energy Office of Science. http://genomicsgtl.energy.gov/carboncycle
  108. Van Noordwijk M, Lawson G, Soumare A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, pp 319–364Google Scholar
  109. Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222. doi: 10.1146/annurev-environ-020411-130608 Google Scholar
  110. von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi: 10.1111/j.1365-2389.2006.00809.x Google Scholar
  111. World Business Council for Sustainable Development (2010) Vision 2050: the new agenda for business. http://www.wbcsd.org/pages/edocument/edocumentdetails.aspx?id=219&nosearchcontextkey=true
  112. Wutzler T, Reichstein M (2007) Soils apart from equilibrium—consequences for soil carbon balance modeling. Biogeosciences 4:125–136Google Scholar
  113. Young A (1997) Agroforestry for soil management. C.A.B. International and ICRAF, WallingfordGoogle Scholar
  114. Zhang W, Ahanbieke P, Wang BJ, Xu WL, Li LH, Christie P, Li L (2013) Root distribution and interactions in jujube tree/wheat agroforestry system. Agrofor Syst 87:929–939. doi: 10.1007/s10457-013-9609-x Google Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Institute for Advanced Sustainability Studies e.V.PotsdamGermany
  2. 2.Carbon Management and Sequestration CenterOhio State UniversityColumbusUSA

Personalised recommendations