Advertisement

Agronomy for Sustainable Development

, Volume 34, Issue 4, pp 813–819 | Cite as

Increase of available soil silicon by Si-rich manure for sustainable rice production

  • Zhaoliang Song
  • Hailong Wang
  • Peter James Strong
  • Shengdao Shan
Research Article

Abstract

Depletion of bioavailable silicon, Si, in paddy soils can decrease the yields of rice. A potential solution is to amend soil with Si-rich organic wastes such as manure from animals fed with rice crop residues. Here, we studied Si in soils from 2000 to 2010 field experiments without manure, with 5 and 10 years of manure, in Eastern China. Results showed that available Si in soils increased from 130 to 270 mg kg−1 after 10 years of manure amendment. This finding is explained either by direct input of available Si or by Si produced by mineralization of Si minerals. To conclude, our results show that amending soil with Si-rich manure in the long term is a solution for sustainable rice production.

Keywords

Silicon bioavailability Fractionation Noncrystalline Si Paddy soil Pig manure Sustainable rice production 

Notes

Acknowledgments

We are grateful for support from the National Natural Science Foundation of China (41103042), Program for the Distinguished Young and Middle-Aged Academic Leaders of Higher Education Institutions of Zhejiang Province (PD2013240), Program for the Top Young Talents of Zhejiang Agricultural and Forestry University, and the Field Frontier Project of Institute of Geochemistry, Chinese Academy of Sciences.

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682. doi: 10.1016/S0016-7037(97)00001-X CrossRefGoogle Scholar
  2. Chen J, Gu BH, Royer RA (2003) The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 307:167–178. doi: 10.1016/S0048-9697(02)00538-7 PubMedCrossRefGoogle Scholar
  3. Conley DJ, Liken G, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Glob Chang Biol 14:2548–2554. doi: 10.1111/j.1365-2486.2008.01667.x Google Scholar
  4. Cornelis J-T, Titeux H, Ranger J, Delvaux B (2010) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378. doi: 10.1007/s11104-010-0702-x CrossRefGoogle Scholar
  5. Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79. doi: 10.1016/j.geoderma.2004.11.014 CrossRefGoogle Scholar
  6. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206. doi: 10.1016/j.chemgeo.2008.10.003 CrossRefGoogle Scholar
  7. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321. doi: 10.1016/j.plantsci.2005.02.023 CrossRefGoogle Scholar
  8. Höhn A, Sommer M, Kaczorek D, Schalitz G, Breuer J (2008) Silicon fractions in Histosols and Gleysols of a temperate grassland site. J Plant Nutr Soil Sci 171:409–418. doi: 10.1002/jpln.200625231 CrossRefGoogle Scholar
  9. Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi: 10.1016/j.geoderma.2010.03.009 CrossRefGoogle Scholar
  10. Kurtz C, Derry LA, Chadwick OA (2002) Germanium/silicon fractionation in the weathering environment. Geochim Cosmochim Acta 66:1525–1537. doi: 10.1016/S0016-7037(01)00869 -9 CrossRefGoogle Scholar
  11. Liang Y, Wong JWC, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483. doi: 10.1016/j.chemosphere.2004.09.034 PubMedCrossRefGoogle Scholar
  12. Lu RK (2000) Methods of soil agricultural chemical analysis. China Agricultural Science and Technology, Beijing (in Chinese)Google Scholar
  13. Ma JF, Takahashi E (1991) Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant Soil 133:151–155. doi: 10.1007/BF00009187 CrossRefGoogle Scholar
  14. Matichenkov VV, Calvert DV (2002) Silicon as a beneficial element for sugarcane. J Am Soc Sugar Tech 22:21–30Google Scholar
  15. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res 36:1415–1426. doi: 10.1016/0198-0149(89)90092-7 CrossRefGoogle Scholar
  16. Murphy J, Riley JP (1962) A modified single solution for the determination of phosphorus in natural waters. Anal Chim Acta 27:31–36. doi: 10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  17. Nakata Y, Ueno M, Kihara J, Ichii M, Taketa S, Arase S (2008) Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice. Crop Prot 27:865–868. doi: 10.1016/j.cropro.2007.08.016 CrossRefGoogle Scholar
  18. Nelson RE, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, 2nd edn. Agron. Monogr. 9. ASA and SSSA, Madison, pp 539–579Google Scholar
  19. Prakash N.B. (2002) Status and utilisation of silicon in Indian rice farming. In: Proceedings of the second silicon in agriculture conference, Tsuruoka, Yamagata, Japan. Japanese Society of Soils and Plant Nutrition, pp. 266–273Google Scholar
  20. Richmond KE, Sussman M (2003) Got Silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272. doi: 10.1016/S1369-5266(03)00041-4 PubMedCrossRefGoogle Scholar
  21. Rodrigues FÁ, Vale FXR, Korndörfer GH, Prabhu AS, Datnoff LE, Oliveira AMA, Zambolim L (2003) Influence of silicon on sheath blight of rice in Brazil. Crop Prot 22:23–29. doi: 10.1016/S0261-2194(02)00084-4 CrossRefGoogle Scholar
  22. Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. Adv Agron 58:151–199. doi: 10.1016/S0065-2113(08)60255-2 CrossRefGoogle Scholar
  23. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329CrossRefGoogle Scholar
  24. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi: 10.1021/ac50043a017 CrossRefGoogle Scholar
  25. Tuna L, Kaya C, Higgs D, Murillo-Amador B et al (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16. doi: 10.1016/j.envexpbot.2007.06.006 CrossRefGoogle Scholar
  26. Van der Vorm PDJ (1980) Uptake of Si by five plant species as influenced by variation in Si supply. Commun Soil Sci Plant Anal 21:153–156CrossRefGoogle Scholar
  27. Van Soest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Techn 130:137–171. doi: 10.1016/j.anifeedsci.2006.01.023 CrossRefGoogle Scholar
  28. White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747CrossRefGoogle Scholar
  29. Wickramasinghe DB, Rowell DL (2006) The release of silicon from amorphous silica and rice straw in Sri Lankan soils. Biol Fert Soils 42:231–240. doi: 10.1007/s00374-005-0020-2 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Zhaoliang Song
    • 1
    • 2
    • 3
  • Hailong Wang
    • 1
    • 2
  • Peter James Strong
    • 4
  • Shengdao Shan
    • 1
    • 2
  1. 1.Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon SequestrationZhejiang Agricultural and Forestry UniversityLin’anChina
  2. 2.School of Environment and ResourcesZhejiang Agricultural and Forestry UniversityLin’anChina
  3. 3.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  4. 4.Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical EngineeringThe University of QueenslandSt LuciaAustralia

Personalised recommendations