Agronomy for Sustainable Development

, Volume 34, Issue 2, pp 455–472 | Cite as

Beneficial effects of silicon on salt and drought tolerance in plants

Review Article

Abstract

Soil salinity and drought are major abiotic factors that limit crop growth and productivity worldwide. Indeed, soil salinity and drought disrupt the cellular ionic and osmotic balance. Although silicon (Si) is generally considered nonessential for plant growth and developments, Si uptake by plants can alleviate both biotic and abiotic stresses. Silicon application could therefore improve crop production under adverse climate and soil conditions. Several reports have reviewed the benefits of silicon application on crop growth, but the mechanisms of silicon action have not been systematically discussed. Here, we review recent advances on silicon uptake, transport, and accumulation in plants and how silicon alleviates salinity toxicity and drought stress. The major points are the following: (1) both passive and active silicon uptake may coexist in plants; (2) although silicon transporters have been identified in some plants, more silicon transporters remain to be identified, and the process of silicon transport needs further clarification; (3) the mechanisms for silicon-mediated tolerance of salinity and drought have been extensively investigated at both physiological and biochemical levels. The physiological aspects include increasing water uptake by roots, maintaining nutrient balance, decreasing water loss from leaves, and promoting photosynthetic rate. At the biochemical level, silicon may improve antioxidant defense abilities by increasing the activities of antioxidant enzymes and the contents of non enzymatic antioxidants; silicon may also contribute to osmotic adjustment and increase photosynthetic enzymatic activities; and (4) silicon can regulate the levels of endogenous plant hormones under stress conditions, whereas silicon involvement in signaling and regulation of gene expression related to increasing stress tolerance remains to be explored.

Keywords

Environmental stress Salinity Drought Silicon Plant Tolerance 

References

  1. Adatia MH, Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann Bot 58:343–351Google Scholar
  2. Agarie S, Agata W, Kubota F, Kaufman PB (1992) Physiological roles of silicon in photosynthesis and dry matter production in rice plants. Jpn J Crop Sci 60:200–206. doi:10.1626/jcs.61.200 (in Japanese)CrossRefGoogle Scholar
  3. Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998a) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103CrossRefGoogle Scholar
  4. Agarie S, Uchida H, Agata W, Kubota F, Kaufman PB (1998b) Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod Sci 1:89–95CrossRefGoogle Scholar
  5. Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci 85:43–50. doi:10.1016/0168-9452(92)90092-z CrossRefGoogle Scholar
  6. Ahmed M, Hassen FU, Khurshid Y (2011a) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Manag 98:1808–1812. doi:10.1016/j.agwat.2011.07.003 CrossRefGoogle Scholar
  7. Ahmed M, Hassen FU, Qadeer U, Aslam MA (2011b) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6:594–607. doi:10.5897/ajar10.626 Google Scholar
  8. Ahsan N, Renault J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621. doi:10.1002/pmic.200800935 PubMedCrossRefGoogle Scholar
  9. Al-aghabary K, Zhu ZJ, Shi QH (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115. doi:10.1081/lpla-200034641 CrossRefGoogle Scholar
  10. Ali M (2013) The greenhouse effect. Climate change impacts on plant biomass growth. Springer, Dordrecht, pp 13–27. doi: 10.1007/978-94-007-5370-9
  11. Ali MA, Lee CH, Kim PJ (2008) Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biol Fertil Soils 44:597–604. doi:10.1007/s00374-007-0243-5 CrossRefGoogle Scholar
  12. An YY, Liang ZS (2013) Drought tolerance of Periploca sepiumduring seed germination: antioxidant defense and compatible solutes accumulation. Acta Physiol Plant 35:959–967. doi:10.1007/s11738-012-1139-z CrossRefGoogle Scholar
  13. Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006 CrossRefGoogle Scholar
  15. Ashraf M, Ahmad A, McNeilly T (2001) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39:389–394. doi:10.1023/a:1015182310754 CrossRefGoogle Scholar
  16. Ashraf M, Rahmatullah, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010a) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391. doi:10.1007/s11104-009-0019-9 CrossRefGoogle Scholar
  17. Ashraf M, Rahmatullah, Ahmad R, Bhatti AS, Afzal M, Sarwar A, Maqsood MA, Kanwal S (2010b) Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere 20:153–162. doi:10.1016/s1002-0160(10)60003-3 CrossRefGoogle Scholar
  18. Balibrea ME, Rus-alvarez AM, Bolarfn MC, Pérez-alfocea F (1997) Fast changes in soluble carbohydrates and proline contents in tomato seedlings in response to ionic and non ionic iso-osmotic stresses. J Plant Physiol 151:221–226. doi:10.1016/s0176-1617(97)80156-3 CrossRefGoogle Scholar
  19. Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley-Interscience, New YorkGoogle Scholar
  20. Bauer P, Elbaum R, Weiss IM (2011) Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746–756. doi:10.1016/j.plantsci.2011.01.019 PubMedCrossRefGoogle Scholar
  21. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434. doi:10.1016/s0955-0674(00)00112-5 PubMedCrossRefGoogle Scholar
  22. Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260. doi:10.1016/s0304-4238(98)00195-2 CrossRefGoogle Scholar
  23. Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol 155:161–170. doi:10.1111/j.1744-7348.2009.00347.x CrossRefGoogle Scholar
  24. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondellia A, Stanca AM (2008) Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crop Res 105:1–14. doi:10.1016/j.fcr.2007.07.004 CrossRefGoogle Scholar
  25. Chakrabarti N, Mukherji S (2003) Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress. Biol Plant 46:63–66. doi:10.1023/a:1022358016487 CrossRefGoogle Scholar
  26. Chattopadhayay MK, Tiwari BS, Chattopadhayay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199. doi:10.1034/j.1399-3054.2002.1160208.x PubMedCrossRefGoogle Scholar
  27. Chen W, Yao XQ, Cai KZ, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76. doi:10.1007/s12011-010-8742-x PubMedCrossRefGoogle Scholar
  28. Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818. doi:10.1111/j.1365-313x.2008.03728.x PubMedCrossRefGoogle Scholar
  29. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68. doi:10.1016/j.tplants.2010.10.003 PubMedCrossRefGoogle Scholar
  30. De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 19:1406–1419. doi:10.1094/mpmi-19-1406 PubMedCrossRefGoogle Scholar
  31. Detmann KC, Araújo L, Martins SCV, Sanglard LMVP, Reis JV, Detmann E, Rodrigues FÁ, Nunes-Nesi A, Fernie AR, DaMatta FA (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752–762. doi:10.1111/j.1469-8137.2012.04299.x PubMedCrossRefGoogle Scholar
  32. Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41–50. doi:10.1016/j.chemgeo.2005.01.018 CrossRefGoogle Scholar
  33. Dodd IC, Davies WJ (2004) Hormones and the regulation of water balance. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action, 3rd edn. Kluwer, Dordrecht, pp 519–548Google Scholar
  34. Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W (2008) Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr 31:355–365. doi:10.1080/01904160801894913 CrossRefGoogle Scholar
  35. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17PubMedCentralPubMedCrossRefGoogle Scholar
  36. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer, SunderlandGoogle Scholar
  37. Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi MJ, Flowers TJ (2010) Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). Plant Cell Environ 33:687–701. doi:10.1111/j.1365-3040.2009.02077.x PubMedGoogle Scholar
  38. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1007/978-90-481-2666-8_12 CrossRefGoogle Scholar
  39. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6. doi:10.1016/j.femsle.2005.06.034 PubMedCrossRefGoogle Scholar
  40. Feng YQ (2000) Siliceous fertilizer to become a new fertilizer product in expansion of agriculture in China. J Chem Fert Ind 27(4):9–11, 36. (in Chinese)Google Scholar
  41. Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011. doi:10.1093/jxb/erq392 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Flowers TJ, Hajibagueri MA, Clipson NCW (1986) Halophytes. Q Rev Biol 61:313–337CrossRefGoogle Scholar
  43. Fu FF, Akagi T, Yabuki S (2002) Origin of silica particles found in the cortex of Matteuccia roots. Soil Sci Soc Am J 66:1265–1271. doi:10.2136/sssaj2002.1265 CrossRefGoogle Scholar
  44. Gao X, Zou C, Wang L, Zhang F (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470. doi:10.1081/pln-200025865 CrossRefGoogle Scholar
  45. Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647. doi:10.1080/01904160600851494 CrossRefGoogle Scholar
  46. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016 PubMedCrossRefGoogle Scholar
  47. Gong HJ, Chen KM (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594. doi:10.1007/s11738-012-0954-6 CrossRefGoogle Scholar
  48. Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26:1055–1063. doi:10.1081/pln-120020075 CrossRefGoogle Scholar
  49. Gong HJ, Zhu XY, Chen KM, Wang S, Zhang CL (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321. doi:10.1016/j.plantsci.2005.02.023 CrossRefGoogle Scholar
  50. Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979. doi:10.1111/j.1365-3040.2006.01572.x PubMedCrossRefGoogle Scholar
  51. Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different develop mental stages. Biol Plant 52:592–596. doi:10.1007/s10535-008-0118-0 CrossRefGoogle Scholar
  52. Gong HJ, Blackmore D, Clingeleffer P, Sykes S, Jha D, Tester M, Walker R (2011) Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. J Exp Bot 62:989–999. doi:10.1093/jxb/erq326 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45. doi:10.1007/s00726-007-0501-8 PubMedCrossRefGoogle Scholar
  54. Guerrier G (1996) Fluxes of Na+, K+ and Cl-, and osmotic adjustment in Lycopersicon pimpinellifolium and L. esculentum during short- and long-term exposures to NaCl. Physiol Plant 97:583–591. doi:10.1111/j.1399-3054.1996.tb00519.x CrossRefGoogle Scholar
  55. Gunes A, Ali I, Bagci EG, Pilbeam DJ (2007a) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103–114. doi:10.1007/s11104-006-9137-9 CrossRefGoogle Scholar
  56. Gunes A, Inal A, Bagci EG, Coban S (2007b) Silicon-mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J Plant Physiol 164:807–811. doi:10.1016/j.jplph.2006.07.011 PubMedCrossRefGoogle Scholar
  57. Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress. I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885–1903. doi:10.1080/00103620802134651 CrossRefGoogle Scholar
  58. Guntzer F, Keller C, Meunier J-D (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213. doi:10.1007/s13593-011-0039-8 CrossRefGoogle Scholar
  59. Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036. doi:10.1007/s11738-013-1239-4 CrossRefGoogle Scholar
  60. Gzik A (1997) Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36:29–38. doi:10.1016/0098-8472(95)00046-1 CrossRefGoogle Scholar
  61. Halford NG (2011) The role of plant breeding and biotechnology in meeting the challenge of global warming. In: Carayannis E (ed) Planet earth 2011—global warming challenges and opportunities for policy and practice. ISBN: 978-953-307-733-8, InTech. http://www.intechopen.com/books/planet-earth-2011-global-warming-challenges-and-opportunities-for-policy-and-practice/the-role-of-plant-breeding-and-biotechnology-in-meeting-the-challenge-of-global-warming
  62. Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L. plants. Soil Sci Plant Nutr 56:244–253. doi:10.1111/j.1747-0765.2009.00443.x CrossRefGoogle Scholar
  63. Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749. doi:10.1093/pcp/pcg090 PubMedCrossRefGoogle Scholar
  64. Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolour. Physiol Plant 123:459–466. doi:10.1111/j.1399-3054.2005.00481.x CrossRefGoogle Scholar
  65. Hattori T, Sonobe K, Araki H, Inanaga S, An P, Morita S (2008a) Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. J Plant Nutr 31:1482–1495. doi:10.1080/01904160802208477 CrossRefGoogle Scholar
  66. Hattori T, Sonobe K, Inanaga S, An P, Morita S (2008b) Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress. J Plant Nutr 31:1046–1058. doi:10.1080/01904160801928380 CrossRefGoogle Scholar
  67. Heffernan O (2013) The dry facts. Nature 501:S2–S3. doi:10.1038/501S2a PubMedCrossRefGoogle Scholar
  68. Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374. doi:10.1007/s11104-006-9085-4 CrossRefGoogle Scholar
  69. Hohmann-Marriott MF, Blankenship RE (2012) The photosynthetic world. In: Eaton-Rye JJ (ed) Photosynthesis. Springer, Dodrecht, pp 3–32. doi:10.1007/978-94-007-1579-0 CrossRefGoogle Scholar
  70. Isa M, Bai S, Yokoyama T, Ma JF, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2010) Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant Soil 331:361–375. doi:10.1007/s11104-009-0258-9 CrossRefGoogle Scholar
  71. Jugdaohsingh R, Kinrade SD, Powell JJ (2008) Is there a biochemical role for silicon? Met Ions Biol Med 10:45–55Google Scholar
  72. Karmoker JL, Von Steveninck RFM (1979) The effect of abscisic acid on the uptake and distribution of ions in intact seedlings of Phaseolus vulgaris cv. Redland Pioneer. Physiol Plant 45:453–459. doi:10.1111/j.1399-3054.1979.tb02613.x CrossRefGoogle Scholar
  73. Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480. doi:10.1080/01904160600837238 CrossRefGoogle Scholar
  74. Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832. doi:10.1093/jxb/47.12.1813 CrossRefGoogle Scholar
  75. Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plant Anal 31:2763–2774. doi:10.1080/00103620009370625 CrossRefGoogle Scholar
  76. Kim YH, Khan AL, Hamayun M, Kang SM, Beom YJ, Lee IJ (2011) Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol Trace Elem Res 144:1175–1185. doi:10.1007/s12011-011-9047-4 PubMedCrossRefGoogle Scholar
  77. Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2013) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul. doi:10.1007/s00344-013-9356-2 Google Scholar
  78. Kotula L, Steudle E (2008) Measurements of oxygen permeability coefficients of rice (Oryza sativa L.) roots using a new perfusion technique. J Exp Bot 60:567–580. doi:10.1093/jxb/ern300 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230:119–134. doi:10.1007/s00425-009-0930-6 PubMedCrossRefGoogle Scholar
  80. Kumar AP, Bandhu AD (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi:10.1016/j.ecoenv.2004.06.010 CrossRefGoogle Scholar
  81. Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340. doi:10.1007/s10457-010-9299-6 CrossRefGoogle Scholar
  82. Liang YC (1998) Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 8:289–296Google Scholar
  83. Liang YC (1999) Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224. doi:10.1023/a:1004526604913 CrossRefGoogle Scholar
  84. Liang YC, Ding RX (2002) Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China Ser C 45:298–308. doi:10.1360/02yc9033 CrossRefGoogle Scholar
  85. Liang YC, Shen QR, Shen ZG, Ma TS (1996) Effects of silicon on salinity tolerance of two barley cultivars. J Plant Nutr 19:173–183. doi:10.1080/01904169609365115 CrossRefGoogle Scholar
  86. Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164. doi:10.1078/0176-1617-01065 PubMedCrossRefGoogle Scholar
  87. Liang YC, Si J, Römheld V (2005a) Silicon uptake and transport is an active process in Cucumis sativus L. New Phytol 167:797–804. doi:10.1111/j.1469-8137.2005.01463.x PubMedCrossRefGoogle Scholar
  88. Liang YC, Zhang WH, Chen Q, Ding RX (2005b) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37. doi:10.1016/j.envexpbot.2004.02.010 CrossRefGoogle Scholar
  89. Liang YC, Hua HX, Zhu Y-G, Zhang J, Cheng CM, Römheld V (2006a) Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol 172:63–72. doi:10.1111/j.1469-8137.2006.01797.x PubMedCrossRefGoogle Scholar
  90. Liang YC, Zhang WH, Chen Q, Liu YL, Ding RX (2006b) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 57:212–219. doi:10.1016/j.envexpbot.2005.05.012 CrossRefGoogle Scholar
  91. Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. doi:10.1016/j.envpol.2006.06.008 PubMedCrossRefGoogle Scholar
  92. Lin YC, Zhang D, Xiao YM (2010) Development of water saving cropping system on potato in northwest regions in China. Chin Agri Sci Bull 26:99–103 (in Chinese with English abstract)Google Scholar
  93. Liu YX, Xu XZ (2007) Effects of silicon on polyamine types and forms in leaf of Zizyphus jujuba cv. Jinsi-xiaozao under salt stress. J Nanjing For Univ 31:27–32. doi:10.3969/j.jssn.1000-2006.2007.04.006 (in Chinese with English abstract)Google Scholar
  94. Liu WG, Wang LQ, Bai YH (2003) Research progress in the beneficial elements—silicon for plants. Acta Bot Boreali Occidentalia Sin 23:2248–2253 (in Chinese with English abstract)Google Scholar
  95. Lobato AKS, Coimbra GK, Neto MAM, Costa RCL, Filho BGS, Neto CFO, Luz LM, Barreto AGT, Pereira BWF, Alves GAR, Monteiro BS, Marochio CA (2009) Protective action of silicon on water relations and photosynthetic pigments in pepper plants induced to water deficit. Res J Biol Sci 4:617–623. doi:10.3923/rjbsci.2009.617.623 Google Scholar
  96. Ma JF (2010) Si transporters in higher plant. In: Jhon PT, Bienert PG (eds) MIPs and their role in the exchange of materials. Landes Bioscience, Texas, pp 99–109CrossRefGoogle Scholar
  97. Ma JF, Takahashi E (1990) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119. doi:10.1007/bf00041376 CrossRefGoogle Scholar
  98. Ma JF, Takahashi E (2002) Soil, fertiliser, and plant silicon research in Janpan. Elsevier, AmsterdamGoogle Scholar
  99. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi:10.1016/j.tplants.2006.06.007 PubMedCrossRefGoogle Scholar
  100. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057. doi:10.1007/s00018-008-7580-x PubMedCrossRefGoogle Scholar
  101. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datonoff L, Snyder G, Korndorfer G (eds) Silicon in agriculture. Elsevier Science, New York, pp 17–39. doi:10.1016/s0928-3420(01)80006-9 CrossRefGoogle Scholar
  102. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691. doi:10.1038/nature04590 PubMedCrossRefGoogle Scholar
  103. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–213. doi:10.1038/nature05964 PubMedCrossRefGoogle Scholar
  104. Ma CH, Yang L, Hu SY (2009) Silicon supplying ability of soil and advances of siliscon fetilizer research. Hubei Agri Sci 4:987–989. doi:10.3969/j.issn.0439-8114.2009.04.066 (in Chinese with English abstract)Google Scholar
  105. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018 PubMedCrossRefGoogle Scholar
  106. Maksimović JD, Bogdanović J, Maksimović V, Nikolic M (2007) Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J Plant Nutr Soil Sci 170:739–744. doi:10.1002/jpln.200700101 CrossRefGoogle Scholar
  107. Mali M, Aery NC (2008) Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J Plant Nutr 31:1867–1876. doi:10.1080/01904160802402666 CrossRefGoogle Scholar
  108. Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol Biochem 36:767–772. doi:10.1016/s0981-9428(98)80028-4 CrossRefGoogle Scholar
  109. Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148. doi:10.1023/a:1013343106574 CrossRefGoogle Scholar
  110. Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121. doi:10.1016/j.plaphy.2012.11.015 PubMedCrossRefGoogle Scholar
  111. Matoh T, Murata S, Takahashi E (1991) Effect of silicate application on photosynthesis of rice plants. Jpn J Soil Sci Plant Nutr 62:248–251 (in Japanese)Google Scholar
  112. Maurel C, Verdoucq L, Luu DT, Santon V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624. doi:10.1146/annurev.arplant.59.032607.092734 PubMedCrossRefGoogle Scholar
  113. Mazumdar J (2011) Phytoliths of pteridophytes. S Afr J Bot 77:10–19. doi:10.1016/j.sajb.2010.07.020 CrossRefGoogle Scholar
  114. Meyer S, Genty S (1998) Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging: significance of Ci estimated from leaf gas exchange. Plant Physiol 116:947–957. doi:10.1104/pp.116.3.947 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Millar AA, Duysen ME, Wilkerson GE (1968) Internal water balance of barley under soil moisture stress. Plant Physiol 43:968–972. doi:10.1104/pp.43.6.968 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14–26. doi:10.1111/j.1439-037X.2011.00486.x CrossRefGoogle Scholar
  117. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261. doi:10.1093/jxb/eri121 PubMedCrossRefGoogle Scholar
  118. Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283. doi:10.1093/pcp/pci018 PubMedCrossRefGoogle Scholar
  119. Mitani N, Chiba Y, Yamaji N, Ma JF (2009a) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142. doi:10.1105/tpc.109.067884 PubMedCentralPubMedCrossRefGoogle Scholar
  120. Mitani N, Yamaji N, Ma JF (2009b) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12. doi:10.1093/pcp/pcn110 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240. doi:10.1111/j.1365-313x.2011.04483.x PubMedCrossRefGoogle Scholar
  122. Miyake Y (1993) Silica in soils and plants. Sci Rep Fac Agr Okayama Univ Jpn 81:61–79Google Scholar
  123. Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F, Ma JF, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46. doi:10.1007/s11103-012-9892-3 PubMedCrossRefGoogle Scholar
  124. Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agri Biol 8:293–297Google Scholar
  125. Nayyar H, Walia DP (2003) Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant 46:275–279. doi:10.1023/a:1022867030790 CrossRefGoogle Scholar
  126. Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495–503. doi:10.1104/pp.106.090845 PubMedCentralPubMedCrossRefGoogle Scholar
  127. Nwugo CC, Huerta AJ (2011) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res 10:518–528. doi:10.1021/pr100716h PubMedCrossRefGoogle Scholar
  128. Ortega L, Fry SC, Taleisnik E (2006) Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. J Exp Bot 57:3945–3952. doi:10.1093/jxb/erl168 PubMedCrossRefGoogle Scholar
  129. Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115. doi:10.1007/s00344-009-9120-9 CrossRefGoogle Scholar
  130. Pisinaras V, Tsihrintzis VA, Petalas C, Ouzounis K (2010) Soil salinization in the agricultural lands of Rhodope District, northeastern Greece. Environ Monit Assess 166:79–94. doi:10.1007/s10661-009-0986-6 PubMedCrossRefGoogle Scholar
  131. Rasool S, Hameed A, Azooz MM, Muneeb-u-Rehman, Siddiqi TO, Parvaiz Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24. doi:10.1007/978-1-4614-4747-4_1 CrossRefGoogle Scholar
  132. Raven JA (2001) Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 41–55. doi:10.1016/s0928-3420(01)80007-0 CrossRefGoogle Scholar
  133. Reddy AR, Chaitanya KV, Vivekanandanb M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:10.1016/j.jplph.2004.01.013 CrossRefGoogle Scholar
  134. Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272. doi:10.1016/s1369-5266(03)00041-4 PubMedCrossRefGoogle Scholar
  135. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855. doi:10.1016/j.jplph.2005.05.010 PubMedCrossRefGoogle Scholar
  136. Rothamsted Research (2013) Rothamsted research's classical experiment “Hoos barley—started in 1852”. http://www.rothamsted.ac.uk/Content-Section=Resources&Page=ClassicalExperiments.html. accessed 19 September 2013
  137. Santa-Gruz A, Acosta M, Pérez-Alfocea F, Bolarin MC (1997) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant 101:341–346. doi:10.1111/j.1399-3054.1997.tb01006.x CrossRefGoogle Scholar
  138. Saqib M, Zörb C, Schubert S (2008) Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct Plant Biol 35:633–639. doi:10.1071/fp08100 CrossRefGoogle Scholar
  139. Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available silicon in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28:1245–1252. doi:10.1080/00103629709369870 CrossRefGoogle Scholar
  140. Savvas D, Giotis D, Chatzieustratiou E, Bakea M, Patakioutas G (2009) Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environ Exp Bot 65:11–17. doi:10.1016/j.envexpbot.2008.07.004 CrossRefGoogle Scholar
  141. Seckin B, Sekmen AH, Türkan İ (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12–20. doi:10.1007/s00344-008-9068-1 CrossRefGoogle Scholar
  142. Shahzad M, Zörb C, Geilfus CM, Mühling KH (2013) Apoplastic Na+ in Vicia faba leaves rises after short-term salt stress and is remedied by silicon. J Agron Crop Sci 199:161–170. doi:10.1111/jac.12003 CrossRefGoogle Scholar
  143. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ exchanger. Proc Natl Acad Sci U S A 97:6896–6901. doi:10.1073/pnas.120170197 PubMedCentralPubMedCrossRefGoogle Scholar
  144. Shi Y, Wang YC, Flowers TJ, Gong HJ (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170:847–853. doi:10.1016/j.jplph.2013.01.018 PubMedCrossRefGoogle Scholar
  145. Siddique MRB, Hamid A, Islam MS (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39Google Scholar
  146. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329. doi:10.1002/jpln.200521981 CrossRefGoogle Scholar
  147. Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2011) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34:71–82. doi:10.1080/01904167.2011.531360 CrossRefGoogle Scholar
  148. Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic Amst 123:240–246. doi:10.1016/j.scienta.2009.09.005 CrossRefGoogle Scholar
  149. Sutka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C (2011) Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions. Plant Physiol 155:1264–1276. doi:10.1104/pp. 110.163113 PubMedCentralPubMedCrossRefGoogle Scholar
  150. Takahashi E, Hino K (1978) Silica uptake by plant with special reference to the forms of dissolved silica. Jpn J Soil Sci Manure 49:357–360Google Scholar
  151. Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16. doi:10.1016/j.envexpbot.2007.06.006 CrossRefGoogle Scholar
  152. Van Bockhaven J, De Vleesschauwer D, Höfte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1293. doi:10.1093/jxb/ers329 PubMedCrossRefGoogle Scholar
  153. Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285. doi:10.1111/j.1747-0765.2007.00135.x CrossRefGoogle Scholar
  154. Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342. doi:10.1023/a:1005632506230 PubMedCrossRefGoogle Scholar
  155. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi:10.1038/nrg2484 PubMedCentralPubMedCrossRefGoogle Scholar
  156. Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ 63:199–206. doi:10.1023/a:1010619503680 CrossRefGoogle Scholar
  157. Whiteman PC (1965) Control of carbon dioxide and water vapour exchange between plantand atmosphere. Dissertation, Hebrew University, JerusalemGoogle Scholar
  158. Wong YC, Heits A, Ville DJ (1972) Foliar symptoms of silicon deficiency in the sugarcane plant. Proc Cong Int Soc Sugarcane Technol 14:766–776Google Scholar
  159. Xiong J, Zhang L, Fu GF, Yang YJ, Zhu C, Tao LX (2012) Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J Plant Res 125:155–164. doi:10.1007/s10265-011-0417-y PubMedCrossRefGoogle Scholar
  160. Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883. doi:10.1105/tpc.109.069831 PubMedCentralPubMedCrossRefGoogle Scholar
  161. Yamaji N, Mitani N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389. doi:10.1105/tpc.108.059311 PubMedCentralPubMedCrossRefGoogle Scholar
  162. Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497. doi:10.1104/pp. 112.204578 PubMedCentralPubMedCrossRefGoogle Scholar
  163. Ye T, Shi PJ, Wang JA, Liu LY, Fan YD, Hu JF (2012) China's drought disaster risk management: perspective of severe droughts in 2009–2010. Int J Disaster Risk Sci 3:84–97. doi:10.1007/s13753-012-0009-z CrossRefGoogle Scholar
  164. Yin LN, Wang SW, Li JY, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant. doi:10.1007/s11738-013-1343-5 Google Scholar
  165. Yoshida S (1965) Chemical aspect of silicon in physiology of the rice plant. Bull Natl Agric Sci B 15:1–58Google Scholar
  166. Yue Y, Zhang M, Zhang JC, Duan LS, Li ZH (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169:255–261. doi:10.1016/j.jplph.2011.10.007 PubMedCrossRefGoogle Scholar
  167. Zapata PJ, Serrano M, Pretel MT, Amorös A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788. doi:10.1016/j.plantsci.2004.05.014 CrossRefGoogle Scholar
  168. Zargar SM, Nazir M, Agarwal GK, Rakwal R (2011) OMICS based strategies for efficient accumulation of silicon in rice to enhance its tolerance against environmental stresses. Mol Plant Breed 2:98–100. doi:10.5376/mpb.2011.02.0014 Google Scholar
  169. Zhang F, Liang YC, He WL, Zhao X, Zhang LX (2004) Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica. In Vitro Cell Dev-Pl 40:491–494. doi:10.1079/IVP2004546 CrossRefGoogle Scholar
  170. Zhou CX, Zhang JY, Li BX (2006) Current status and developing prospect of silicate fertilizer. J Chem Ind Eng 27(6):48–53 (in Chinese)Google Scholar
  171. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi:10.1016/s1360-1385(00)01838-0 PubMedCrossRefGoogle Scholar
  172. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329 PubMedCentralPubMedCrossRefGoogle Scholar
  173. Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JP (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. doi:10.1016/j.plantsci.2004.04.020 CrossRefGoogle Scholar
  174. Zushi K, Matsuzoe N, Kitano M (2009) Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Sci Hortic 122:362–368. doi:10.1016/j.scienta.2009.06.001 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  1. 1.College of HorticultureNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations