Skip to main content

Advertisement

Log in

Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Agrobiodiversity can improve the sustainability of cropping systems in a context of low external inputs and unpredictable climate change. Agrobiodiversity strategies to grow wheat are breeding ad hoc cultivars for organic and low-input systems, wheat–legume intercrops and living mulches, cultivar mixtures, and the use of genetically heterogeneous populations. However, applying those strategies can fail due the lack of a well-focused framework. Therefore, we need a better integration between breeding and management and a clear focus on crop traits related to key agroecosystem services. Here, we review the use of agrobiodiversity in wheat production, focusing on breeding and management. We discuss five agroecosystem services: (1) weed reduction, (2) nitrogen use efficiency, (3) abiotic stress tolerance, (4) disease and pest reduction and (5) yield and yield stability. We categorise agrobiodiversity into functional identity, functional composition, and functional diversity, in order to link crop traits to agroecosystem services. Linking crop traits to agroecosystem services could in turn lead to concrete options for farmers and policy. We discuss the relations between crop identity and crop heterogeneity. We also discuss the partitioning of crop heterogeneity between functional composition and functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Able JA, Langridfe P, Milligan AS (2007) Capturing diversity in the cereals: many options but little promiscuity. Trends Plant Sci 12(2):71–79. doi:10.1016/j.tplants.2006.12.002

    CAS  PubMed  Google Scholar 

  • Agegnehu G, Ghizaw A, Sinebo W (2008) Yield potential and land-use efficiency of wheat and faba bean mixed intercropping. Agron Sust Dev 28:257–263. doi:10.1051/agro:2008012

    Google Scholar 

  • Agrama HA (2006) Application of molecular markers in breeding for nitrogen use efficiency. J Crop Improv 15:175–211. doi:10.1300/J411v15n02_06

    Google Scholar 

  • Akanda SI, Mundt CC (1997) Effect of two-component cultivar mixtures and yellow rust on yield and yield components of wheat. Plant Pathol 46:566–580. doi:10.1046/j.1365-3059.1997.d01-37.x

    Google Scholar 

  • Almekinders CJM, Elings A (2001) Collaboration of farmers and breeders: participatory crop improvement in perspective. Euphytica 122:425–438. doi:10.1023/A:1017968717875

    Google Scholar 

  • Andrivon D, Giorgetti C, Baranger A, Calonnec A, Cartolaro P, Faivre R, Guyader S, Lauri PE, Lescourret F, Parisi L, Ney B, Tivoli B, Sache I (2013) Defining and designing plant architectural ideotypes to control epidemics? Eur J Plant Pathol 135:611–617. doi:10.1007/s10658-012-0126-y

    Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412. doi:10.1080/07352680802467736

    Google Scholar 

  • Arterburn M, Murphy K, Jones SS (2012) Wheat: breeding for organic farming systems. In: Lammerts van Bueren ET, Myers JR (eds.) Organic crop breeding. Wiley-Blackwell, Hoboken, pp. 163–174. ISBN 978-0-470-95858-2

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Change Biol 17:997–1012. doi:10.1016/S1161-0301(01)00149-6

    Google Scholar 

  • Atlin GN, Baker RJ, McRae KB, Lu X (2000) Selection response in subdivided target regions. Crop Sci 40:7–13. doi:10.2135/cropsci2000.4017

    Google Scholar 

  • Austin RB (1999) Yield of wheat in the United Kingdom: recent advances and prospects. Crop Sci 39:1604–1610. doi:10.2135/cropsci1999.3961604x

    Google Scholar 

  • Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to wheat stem rust needed. Curr Opin Plant Biol 11:187–192. doi:10.1016/j.pbi.2008.02.001

    CAS  PubMed  Google Scholar 

  • Baddeley J, Rees B, Bingham I, Watson C (2006) Nitrogen transfer from red and white clover to spring barley. In: Østergård H, Fontaine L (eds.) Proceedings of the COST SUSVAR Workshop on Cereal Crop Diversity: Implications for Production and Products. La Besse (France), 13–14 June 2006

  • Banik P (1996) Evaluation of wheat (Triticum aestivum) and legume intercropping under 1:1 and 2:1 row-replacement series system. J Agron Crop Sci 176:285–294. doi:10.1111/j.1439-037X.1996.tb00473.x

    Google Scholar 

  • Bannon FJ, Cooke BM (1998) Studies on dispersal of Septoria tritici pycnidiospores in wheat-clover intercrops. Plant Pathol 47:49–56. doi:10.1046/j.1365-3059.1998.00200.x

    Google Scholar 

  • Bàrberi P (2002) Weed management in organic agriculture: are we addressing the right issues? Weed Res 42:177–193. doi:10.1046/j.1365-3180.2002.00277.x

    Google Scholar 

  • Bàrberi P, Burgio G, Dinelli G, Moonen AC, Otto S, Vazzana C, Zanin G (2010) Functional biodiversity in the agricultural landscape: relationships between weeds and arthropod fauna. Weed Res 50:388–401. doi:10.1111/j.1365-3180.2010.00798.x

    Google Scholar 

  • Baresel JP, Zimmermann G, Reents HJ (2008) Effects of genotype and environment on N uptake and N partitioning in organically grown winter wheat (Triticum aestivum L.) in Germany. Euphytica 163:347–354. doi:10.1007/s10681-008-9718-1

    Google Scholar 

  • Barraclough PB, Howarth JR, Jones J, Lopez-Bellido R, Parmar S, Shepherd CE, Hawkesford MJ (2010) Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur J Agron 33:1–11. doi:10.1016/j.eja.2010.01.005

    CAS  Google Scholar 

  • Bedoussac L, Justes E (2009) The efficiency of a durum wheat–winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330:19–35. doi:10.1007/s11104-009-0082-2

    Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions—an update. Pest Manag Sci 63:308–326. doi:10.1002/ps.1320

    CAS  PubMed  Google Scholar 

  • Bennet AJ, Bending GD, Chandler D, Hilton S, Mills P (2012) Meeting the demand for crop production: the challenge of yield declines in crops grown in short rotations. Biological Rev 87:52–71. doi:10.1111/j.1469-185X.2011.00184.x

    Google Scholar 

  • Bergkvist G (2003) Effect of white clover and nitrogen availability on the grain yield of winter wheat in a three-season intercropping system. Acta Agric Scand Sect B Soil Plant Sci 53:97–109

    Google Scholar 

  • Bertholdsson NØ (2011) Use of multivariate analysis to separate allelopathic and competitive factors influencing weed suppression ability in winter wheat. Weed Res 51:273–283. doi:10.1111/j.1365-3180.2011.00844.x

    Google Scholar 

  • Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P (2011) Intercropping promotes the ability of durum wheat to increase rhizosphere phosphorous availability in a low P soil. Soil Biol Biochem 46:181–190. doi:10.1016/j.soilbio.2011.11.015

    Google Scholar 

  • Bilton MC, Whitlock R, Grime JP, Marion G, Pakeman RK (2010) Intraspecific trait variation in grassland plant species reveals fine-scale strategy trade-offs and size differentiation that underpins performance in ecological communities. Botany 88:939–952. doi:10.1139/B10-065

    Google Scholar 

  • Blaser BC, Gibson LR, Singer JW, Jannink J-L (2006) Optimizing seeding rates for winter cereal grains and frost-seeded red clover intercrops. Agron J 98:1041–1049. doi:10.2134/agronj2005.0340

    Google Scholar 

  • Borgen A (2013) Improved quality and disease management in diverse populations. In: Döring T, Howlett S, Winkler L, Wolfe MS (eds.) Proceedings of the International Symposium on Evolutionary Breeding in Cereals, Aston University, Birmingham (UK), 21 January 2013. The Organic Research Centre, Hamstead Marshall, UK, p. 7 (full proceedings available at http://orgprints.org/22440/)

  • Borin M, Ceccon P (2002) I sistemi colturali nella ricerca agronomica: un problema di scala. In: Bonari E, Ceccon P (eds) Verso un approccio integrato allo studio dei sistemi colturali. Franco Angeli, Milano, pp 11–43. ISBN: 9788846440709

    Google Scholar 

  • Botha AM, Li Y, Lapitan NLV (2005) Cereal host interactions with Russian wheat aphid: a review. J Plant Interact 1:211–222. doi:10.1080/17429140601073035

    CAS  Google Scholar 

  • Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res 119:201–212. doi:10.1016/j.fcr.2010.07.012

    Google Scholar 

  • Brown AHD, Hodgkin T (2007) Measuring, managing, and maintaining crop genetic diversity on farm. In: Jarvis D, Padoch C, Cooper HD (eds.) Managing biodiversity in agricultural systems. Columbia University Press, New York, pp. 13–33. ISBN: 978-0-231-13648-8

  • Caballero-López B, Blanco-Moreno J, Pérez-Hidalgo N, Michelena-Saval JM, Pujade-Villar J, Guerrieri E, Sánchez-Espigares J, Sans FX (2012) Weeds, aphids, and specialist parasitoids and predators benefit differently from organic and conventional cropping of winter cereals. J Pest Sci 85:81–88. doi:10.1007/s10340-011-0409-7

    Google Scholar 

  • Callaway MB (1992) A compendium of crop varietal tolerance to weeds. Am J Altern Agric 7:169–180. doi:10.1017/S088918930000477X

    Google Scholar 

  • Carof et al (2007a) Undersowing wheat with different living mulches in a no-till system. I. Yield analysis. Agron Sust Dev 27:347–356. doi:10.1051/agro:2007016

    Google Scholar 

  • Carof et al (2007b) Undersowing wheat with different living mulches in a no-till system. II. Competition for light and nitrogen. Agron Sust Dev 27:357–365. doi:10.1051/agro:2007017

    Google Scholar 

  • Carson ML (2009) Crown rust development and selection for virulence in Puccinia coronata f. sp. Avenae in an oat multiline cultivar. Plant Dis 93:347–353. doi:10.1094/PDIS-93-4-0347

    Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959. doi:10.1073/pnas.96.11.5952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceccarelli S (1989) Wide adaptation: how wide? Euphytica 40:197–205. doi:10.1007/BF00024512

    Google Scholar 

  • Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77:205–219. doi:10.1007/BF02262633

    Google Scholar 

  • Ceccarelli S (1996) Adaptation to low/high input cultivation. Euphytica 92:203–214. doi:10.1007/BF00022846

    Google Scholar 

  • Ceccarelli S, Grando S, Tutwiler R, Baha J, Martini AM, Salahieh H, Goodchild A, Michael M (2000) A methodological study on participatory barley breeding. I. Selection phase. Euphytica 111:91–104. doi:10.1023/A:1003717303869

    Google Scholar 

  • Ceccarelli S, Grando S, Singh M, Michael M, Shikho A, Al Issa M, Al Saleh A, Kaleonjy G, Al Ghanem SM, Al Hasan AL, Dalla H, Basha S, Basha T (2003) A methodological study on participatory barley breeding. II. Response to selection. Euphytica 133:185–200. doi:10.1023/A:1025535609828

    Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010) Plant breeding and climate changes. J Agric Sci 148:627–637. doi:10.1017/S0021859610000651

    Google Scholar 

  • Chen Y, Zhang F, Tang L, Zheng Y, Li Y, Christie P, Li L (2007) Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant Soil 291:1–13. doi:10.1007/s11104-006-9161-9

    CAS  Google Scholar 

  • Cleveland DA (2001) Is plant breeding science objective truth or social construction? The case of yield stability. Agric Hum Values 18:251–270. doi:10.1023/A:1011923222493

    Google Scholar 

  • Coleman RK, Gill GS, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Australian J of Agric Res 52:1235–1246. doi:10.1071/AR01055

    CAS  Google Scholar 

  • Comadran J, Russel JR, Van Eeuwijk FA, Ceccarelli S, Grando S, Baum M, Stanca AM, Pecchioni N, Mastrangelo AM, Akar T, Al-Yassin A, Benbelkacem A, Choumane W, Ouabbou H, Dahan R, Bort J, Araus JL, Pswarayi A, Romagosa I, Hackett CA, Thomas WTB (2008) Mapping adaptation of barley to droughted environments. Euphytica 161:35–45. doi:10.1007/s10681-007-9508-1

    Google Scholar 

  • Conway KE (1996) An overview of the influence of sustainable agricultural systems on plant diseases. Crop Prot 15:223–228. doi:10.1016/0261-2194(95)00119-0

    Google Scholar 

  • Cooper M, Woodruf DR, Phillips IG, Basford KE, Gilmour AR (2001) Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res 69:47–67. doi:10.1016/S0378-4290(00)00131-3

    Google Scholar 

  • Cosser ND, Gooding MJ, Thompson AJ, Froud-William RJ (1997) Competitive ability and tolerance of organically grown wheat cultivars to natural weed infestations. Ann Appl Biol 130:523–535. doi:10.1111/j.1744-7348.1997.tb07679.x

    Google Scholar 

  • Cousens RD, Mokhtari S (1998) Seasonal and site variability in the tolerance of wheat cultivars to interference from Lolium rigidum. Weed Res 38:301–307. doi:10.1046/j.1365-3180.1998.00097.x

    Google Scholar 

  • Cowger C, Weisz R (2008) Winter wheat blends (mixtures) produce a yield advantage in North Carolina. Agron J 100:169–177. doi:10.2134/agronj2007.0128

    Google Scholar 

  • Cox TS, Wood D (1999) The nature and role of crop biodiversity. In: Wood D, Lenné JM (eds) Agrobiodiversity: characterization, utilization and management. CAB International, Wallingford

    Google Scholar 

  • Cox CM, Garret KA, Bowden RL, Fritz AK, Dendy SP, Heer WF (2004) Cultivar mixtures for the simultaneous management of multiple diseases: tan spot and leaf rust of wheat. Phytopathology 94:961–969. doi:10.1094/PHYTO.2004.94.9.961

    CAS  PubMed  Google Scholar 

  • Czembor PC, Arseniuk E, Czaplicki A, Song Q, Cregan PB, Ueng PP (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46:546–554. doi:10.1139/g03-036

    CAS  PubMed  Google Scholar 

  • Dambroth M, El Bassam N (1983) Low input varieties: definition, ecological requirements and selection. Plant Soil 72:365–377. doi:10.1007/BF02181974

    CAS  Google Scholar 

  • Darnhofer I, Lindenthal T, Bartel-Kratochvil R, Zollitsch W (2010) Conventionalisation of organic farming: from structural criteria towards an assessment based on organic principles. A review. Agron Sust Dev 30:67–81. doi:10.1051/agro/2009011

    Google Scholar 

  • David JL, Zivy M, Cardin ML, Brabant P (1997) Protein evolution in dynamically managed populations of wheat: adaptive responses to macro-environmental conditions. Theor Appl Gen 96:932–941. doi:10.1007/s001220050644

    Google Scholar 

  • Davies DB, Sylvester-Bradley R (1995) The contribution of fertilizer nitrogen to leachable nitrogen in the UK: a review. J Sci Food Agric 68:399–406. doi:10.1002/jsfa.2740680402

    CAS  Google Scholar 

  • Davis JHC, Woolley JN (1993) Genotypic requirement for intercropping. Field Crop Res 34:407–430. doi:10.1016/0378-4290(93)90124-6

    Google Scholar 

  • Dawson JC, Goldringer I (2012) Breeding for genetically diverse populations: variety mixtures and evolutionary populations. In: Lammerts van Bueren ET, Myers JR (eds.) Organic crop breeding. Wiley-Blackwell, Hoboken, pp. 77–98, ISBN 978-0-470-95858-2

  • De Smet GMW, Scharen AL, Hockett EA (1985) Conservation of powdery mildew resistance genes in three composite cross populations of barley. Euphytica 34:265–272. doi:10.1007/BF00022918

    Google Scholar 

  • Den Hollander NG (2012) Growth characteristics of several clover species and their suitability for weed suppression in a mixed cropping design. Thesis, Wageningen University, Wageningen NL. ISBN 978-94-6173-268-2

  • Desclaux D, Nolot J, Chiffoleau Y, Gozé E, Leclerc C (2008) Changes in the concept of genotype x environment interactions to fit agriculture diversification and decentralized participatory plant breeding: pluridisciplinary point of view. Euphytica 163:533. doi:10.1007/s10681-008-9717-2

    Google Scholar 

  • Desclaux D, Ceccarelli S, Navazio J, Coley M, Trouche G, Aguirre S, Weltzien, Lançon J (2012) Centralized or decentralized breeding: the potential of participatory approaches for low-input and organic agriculture. In: Lammerts van Bueren ET, Myers JR (eds.) Organic crop breeding. Wiley-Blackwell, Hoboken, pp. 99–123. ISBN 978-0-470-95858-2

  • Dinelli G, Marotti I, Di Silvestro R, Bosi S, Bregola V, Accorsi M, Di Loreto A, Benedettelli S, Ghiselli L, Catizone P (2013) Agronomic, nutritional and nutraceutical aspects of durum wheat (Triticum durum Desf.) cultivars under low input agricultural management. Italian J Agron 8:85–93. doi:10.4081/ija.2013.e12

    Google Scholar 

  • Doltra J, Olesen JE (2013) The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Europ J Agron 44:98–108. doi:10.1016/j.eja.2012.03.006

    Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403. doi:10.1007/BF00056241

    Google Scholar 

  • Doré T, Makowski D, Malézieux E, Mounier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210. doi:10.1016/j.eja.2011.02.006

    Google Scholar 

  • Döring TF, Knapp S, Kovacs G, Murphy K, Wolfe MS (2011) Evolutionary plant breeding in cereals: into a new era. Sustainability 3:1944–1971. doi:10.3390/su3101944

    Google Scholar 

  • Döring T, Pautasso M, Wolfe MS, Finckh MR (2012) Pest and disease management in organic farming: implications and inspirations for plant breeding. In: Lammerts van Bueren ET, Myers JR (eds.) Organic crop breeding. Wiley-Blackwell, Hoboken, pp. 39–59. ISBN 978-0-470-95858-2

  • Duelli P (2006) Concepts of multifunctional agriculture and functional biodiversity. In: Biala K, Paracchini ML, Terres JM, Pointereau P, Pezet J (eds) Bio-diversity serving agriculture. Institute for Environment and Sustainability, Ranco, p 44

    Google Scholar 

  • El Bouhssini M, Ogbonnaya FC, Ketata H, Mosaad MM, Street K, Amri A, Keser M, Rajaram S, Morgounov A, Ihawi F, Dabus A, Smith CM (2011) Progress in host plant resistance in wheat to Russian wheat aphid (Hemiptera: Aphididae) in North Africa and West Asia. Aust J Crop Sci 5:1108–1113

    Google Scholar 

  • Enjalbert J, Dawson JC, Paillard S, Rhoné B, Rousselle Y, Thomas M, Goldringer I (2011) Dynamic management of crop diversity: from an experimental approach to on-farm conservation. Comptes Rendues Biologies 334:458–468. doi:10.1016/j.crvi.2011.03.005

    Google Scholar 

  • Fabre F, Rousseau E, Mailleret L, Moury B (2012) Durable strategies to deploy plant resistance in agricultural landscapes. New Phytol 193:1064–1075. doi:10.1111/j.1469-8137.2011.04019.x

    PubMed  Google Scholar 

  • Finckh MR (2008) Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur J Plant Pathol 121:299–409. doi:10.1007/s10658-008-9273-6

    Google Scholar 

  • Finckh MR, Gacek ES, Czembor HJ, Wolfe MS (1999) Host frequency and density effects on powdery mildew and yield in mixtures of barley cultivars. Plant Pathol 48:807–816. doi:10.1046/j.1365-3059.1999.00398.x

    Google Scholar 

  • Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, De Vallavielle-Pope C, Wolfe MS (2000) Cereal variety and species mixture in practice, with special emphasis on disease resistance. Agronomie 20:813–837

    Google Scholar 

  • Foletto B (2008) European rules for registration of varieties on a national catalogue (and a recommended variety list) for cereals. In: Rey F, Fontaine L, Osman A, van Waes J (eds.) Proceedings of the COST ACTION 860–\SUSVAR and ECO-PB Workshop on Value for Cultivation and Use testing of organic cereal varieties. What are the key issues? 28th and 29th February 2008, Brussels, Belgium. SUSVAR, COST, ECO-PB, ITAB, Paris, France, pp. 9–10 (full proceedings available at www.eco-pb.org)

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322. doi:10.1111/j.1365-2745.2007.01345.x

    CAS  Google Scholar 

  • Fornara DA, Tilman D (2009) Ecological mechanisms associated with the positive diversity-productivity relationship in an N limited grassland. Ecol 90:408–418. doi:10.1890/08-0325.1

    CAS  Google Scholar 

  • Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S, Kightley S, Shewry PR (2009) Identifying traits to improve the nitrogen economy of wheat. Field Crops Res 114:329–342. doi:10.1016/j.fcr.2009.09.005

    Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffith S, Reynolds MP (2011) Raising yield potential of wheat III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486. doi:10.1093/jxb/erq300

    CAS  PubMed  Google Scholar 

  • Fridley JD, Grime JP (2010) Community and ecosystem effects of intraspecific genetic diversity in grassland microcosm of varying species diversity. Ecology 91:2272–2283. doi:10.1890/09-1240.1

    PubMed  Google Scholar 

  • Fridley JD, Grime JP, Bilton M (2007) Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J Ecol 95:908–915. doi:10.1111/j.1365-2745.2007.01256.x

    Google Scholar 

  • Fukai S, Midmore DJ (1993) Adaptive research for intercropping: steps towards the transfer of intercrop research findings to farmers’ fields. Filed Crops Res 34:459–467. doi:10.1016/0378-4290(93)90126-8

    Google Scholar 

  • Garret KA, Hulbert SH, Leach JE, Travers SE (2006) Ecological genomics and epidemiology. Eur J Plant Pathol 115:35–51. doi:10.1007/s10658-005-4050-2

    Google Scholar 

  • Garret KA, Zúñiga LN, Roncal E, Forbes GA, Mundt CC, Su Z, Nelson RJ (2009) Intraspecific functional diversity in hosts and its effect on disease risk across a climatic gradient. Ecol App 19:1868–1883. doi:10.1890/08-0942.1

    Google Scholar 

  • Giampietro M (2004) Multi-scale integrated analysis of agroecosystems. CRC, Boca Raton, p. 73

  • Glen DM (2000) The effects of cultural measures on cereal pests and their role in integrated pest management. Integr Pest Manag Rev 5:25–40. doi:10.1023/A:1009609504464

    Google Scholar 

  • Goldringer I, Paillard S, Enjalbert J, David JL, Brabant P (1998) Divergent evolution of wheat populations conducted under recurrent selection and dynamic management. Agronomie 18:413–425. doi:10.1051/agro:19980506

    Google Scholar 

  • Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817. doi:10.1093/aob/mcl160

    PubMed Central  PubMed  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x

    Google Scholar 

  • Guarda G, Padovan S, Delogu G (2004) Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur J Agron 21:181–192. doi:10.1016/j.eja.2003.08.001

    CAS  Google Scholar 

  • Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Sci 50:688–699. doi:10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2

    CAS  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Res 70:101–109. doi:10.1007/s10705-009-9254-y

    Google Scholar 

  • Helland SJ, Holland JB (2001) Blend response and stability and cultivar blending ability in oat. Crop Sci 41:1689–1696

    Google Scholar 

  • Hensleigh PF, Blake TK, Welty LE (1992) Natural selection on winter barley composite cross XXVI affects winter survival and associated traits. Crop Sci 32:57–62. doi:10.2135/cropsci1992.0011183X003200010013x

    Google Scholar 

  • Hill J (1996) Breeding components for mixture performance. Euphytica 92:135–138. doi:10.1007/BF00022838

    Google Scholar 

  • Hiltbrunner J, Liedgens M (2008) Performance of winter wheat varieties in white clover living mulch. Biol Agric Hortic 26:85–101. doi:10.1080/01448765.2008.9755071

    Google Scholar 

  • Hiltbrunner J, Liedgens M, Bloch L, Stamp P, Streit B (2007a) Legume cover crops as living mulches for winter wheat: components of biomass and the control of weeds. Eur J Agron 26:21–29. doi:10.1016/j.eja.2006.08.002

    Google Scholar 

  • Hiltbrunner J, Jeanneret P, Liedgens M, Stamp P, Streit B (2007b) Response of weed communities to legume living mulches in winter wheat. J Agron Crop Sci 193:93–102. doi:10.1111/j.1439-037X.2007.00250.x

    Google Scholar 

  • Hiltbrunner J, Streit B, Liedgens M (2007c) Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Res 102:163–171. doi:10.1016/j.fcr.2007.03.009

    Google Scholar 

  • Hoad SP, Bertholdsson NØ, Neuhoff D, Köpke U (2012) Approaches to breed for improved weed suppression in organically grown cereals. In: Lammerts van Bueren ET, Myers JR (eds.) Organic crop breeding. Wiley-Blackwell, Hoboken, pp. 61–76. ISBN 978-0-470-95858-2

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci U S A 96:5937–5943. doi:10.1073/pnas.96.11.5937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollomon DW, Brent KJ (2009) Combating plant diseases—the Darwin connection. Pest Manag Sci 65:1156–1163. doi:10.1002/ps.1845

    CAS  PubMed  Google Scholar 

  • Howard PH (2009) Visualizing consolidation in the global seed industry: 1996–2008. Sustainability 1:1266–1287. doi:10.3390/su1041266

    Google Scholar 

  • Huel DG, Hucl P (1996) Genotypic variation for competitive ability in spring wheat. Plant Breed 115:325–329. doi:10.1111/j.1439-0523.1996.tb00927.x

    Google Scholar 

  • Ibrahim KM, Hayter JBR, Barret JA (1996) Frequency changes in storage protein genes in a hybrid bulk population of barley. Heredity 77:231–239. doi:10.1038/sj.hdy.6880440

    Google Scholar 

  • Isidro J, Álvaro F, Royo C, Villegas D, Miralles DJ, García Del Moral LF (2011) Changes in duration of developmental phases of durum wheat caused by breeding in Spain and Italy during the 20th century and its impact on yield. Ann Bot 107:1355–1366. doi:10.1093/aob/mcr063

    PubMed Central  PubMed  Google Scholar 

  • Jackson L, van Noordwijk M, Bengtsson J, Foster W, Lipper L, Pulleman M, Said M, Snaddon J, Vodouhe R (2010) Biodiversity and agricultural sustainability: from assessment to adaptive management. Curr Opin Environ Sustain 2:80–87. doi:10.1016/j.cosust.2010.02.007

    Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Phil Trans R Soc B 365:2835–2851. doi:10.1098/rtsb.2010.0153

    PubMed Central  PubMed  Google Scholar 

  • Jana MK, Jana S, Acharya SN (1980) Salt stress tolerance in heterogeneous population of barley. Euphytica 29:409–417. doi:10.1007/BF00025140

    Google Scholar 

  • Jensen ES (1996) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38. doi:10.1007/BF00010992

    CAS  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73–81. doi:10.1016/0038-0717(95)00117-4

    CAS  Google Scholar 

  • Jones H, Jarman RJ, Austin L, White J, Cooke RJ (2003) The management of variety reference collections in distinctness, uniformity and stability testing of wheat. Euphytica 132:175–184. doi:10.1023/A:1024642828705

    Google Scholar 

  • Jordan N (1993) Prospects for weed control through crop interference. Ecol Appl 3:84–91. doi:10.2307/1941794

    Google Scholar 

  • Juskiw PE, Helm JH, Salmon DF (2000) Competitive ability in mixtures of small grain cereals. Crop Sci 40:159–164. doi:10.2135/cropsci2000.401159x

    Google Scholar 

  • Kairudin NMD (1991) Productivity of homogeneous and heterogeneous oat populations at two sowing dates. Pertanika 14(3):229–236

    Google Scholar 

  • Kaut AHEE, Mason HE, Navabi A, O’Donovan JT, Spaner D (2009) Performance and adaptability of performance of spring wheat variety mixtures in organic and conventional management systems in western Canada. J Agric Sci 147:141–153. doi:10.1017/S0021859608008319

    Google Scholar 

  • Khalifa MA, Qualset CO (1974) Intergenotypic competition between tall and dwarf wheats. I. In mechanical mixtures. Crop Sci 14:795–799

    Google Scholar 

  • Khalifa MA, Qualset CO (1975) Intergenotypic competition between tall and dwarf wheats. II. In hybrid bulks. Crop Sci 15:640–644

    Google Scholar 

  • Kiær LP, Skovgaaed IM, Østergård H (2009) Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res 114:361–373. doi:10.1016/j.fcr.2009.09.006

    Google Scholar 

  • Kiær LP, Skovgaaed IM, Østergård H (2012) Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 185:123–138. doi:10.1007/s10681-012-0640-1

    Google Scholar 

  • Kilpatrick RA (1975) New wheat cultivars and longevity of rust resistance 1971–1975. U.S. Agricultural Research Service North-East Region. ARS-NE NE-64

  • Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crops Res 107:185–195. doi:10.1016/j.fcr.2008.02.010

    Google Scholar 

  • Knapp S, Snape J, Döring TF, Wolfe MS, Griffiths S (2013) Genetic analysis of evolving winter wheat populations reveals reversion to wild type. Döring T, Howlett S, Winkler L, Wolfe MS (eds.) Proceedings of the International Symposium on Evolutionary Breeding in Cereals, Aston University, Birmingham (UK), 21 January 2013. The Organic Research Centre, Hamstead Marshall, UK, p. 9 (full proceedings available at http://orgprints.org/22440/)

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185. doi:10.1016/j.pbi.2009.12.010

    CAS  PubMed  Google Scholar 

  • Lammerts van Bueren ET, Backes G, de Vriend H, Østergård H (2010) The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica 175:51–64. doi:10.1007/s10681-010-0169-0

  • Lammerts van Bueren ET, Jones SS, Tamm L, Murphy KM, Myers JR, Leifert C, Messmer MM (2011) The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS – Wageningen J Life Sci 58:193–205. doi:10.1016/j.njas.2010.04.001

  • Lannou C, Mundt CC (1996) Evolution of a pathogen population in host mixtures: simple race-complex race competition. Plant Pathol 45:440–453. doi:10.1046/j.1365-3059.1996.d01-138.x

    Google Scholar 

  • Lannou C, Mundt CC (1997) Evolution of a pathogen in host mixtures: rate of emergence of complex races. Theor Appl Genet 94:991–999. doi:10.1007/s001220050506

    Google Scholar 

  • Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret F, Le Gouis J (2007) Using genotype x nitrogen interaction variables to evaluate QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115:399–415. doi:10.1007/s00122-007-0575-4

    CAS  PubMed  Google Scholar 

  • Lee KM, Shroyer JP, Herrman TJ, Lingenfelser J (2006) Blending hard white wheat to improve grain yield and end-use performances. Crop Sci 46:1124–129. doi:10.2135/cropsci2005.07-0184

    CAS  Google Scholar 

  • Lemerle D, Verbeek B, Orchard B (2001) Ranking the ability of wheat varieties to compete with Lolium rigidum. Weed Res 41:197–209. doi:10.1046/j.1365-3180.2001.00232.x

    Google Scholar 

  • Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le Cadre E, Hinsinger P (2008) Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant Soil 312:139–150. doi:10.1007/s11104-007-9512-1

    CAS  Google Scholar 

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122. doi:10.2307/1941795

    Google Scholar 

  • Lithourgidis AS, Dordas CA (2010) Forage yield, growth rate, and nitrogen uptake of faba bean intercrops with wheat, barley, and rye in three seeding ratios. Crop Sci 50:2148–2158. doi:10.2135/cropsci2009.12.0735

    CAS  Google Scholar 

  • Lithourgidis AS, Dhima KV, Vasilakoglou IB, Dordas CA, Yiakoulaki MD (2007) Sustainable production of barley and wheat by intercropping common vetch. Agron Sust Dev 27:95–99. doi:10.1051/agro:2006033

    CAS  Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011a) Annual intercrops: an alternative pathway for sustainable agriculture. Austr J Crop Sci 5:396–410

    Google Scholar 

  • Lithourgidis AS, Vlachostergios DN, Dordas CA, Damalas CA (2011b) Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur J Agron 34:287–294. doi:10.1016/j.eja.2011.02.007

    Google Scholar 

  • Lopez CG, Mundt CC (2000) Using mixing ability analysis from two-way cultivar mixtures to predict the performance of cultivars in complex mixtures. Field Crop Res 68:121–132. doi:10.1016/S0378-4290(00)00114-3

    Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi:10.1126/science.1071148

    PubMed  Google Scholar 

  • Malézieux E (2012) Designing cropping systems from nature. Agron Sust Dev 32:15–29. doi:10.1007/s13593-011-0027-z

    Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, De Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sust Dev 29:43–62. doi:10.1051/agro:2007057

    Google Scholar 

  • Marshall DR (1977) The advantages and hazards of genetic homogeneity. Ann N Y Acad Sci 287:1–20. doi:10.1111/j.1749-6632.1977.tb34226.x

    Google Scholar 

  • Marshall DR (1991) Alternative approaches and perspectives in breeding for higher yields. Field Crops Res 26:171–190. doi:10.1016/0378-4290(91)90034-S

    Google Scholar 

  • Marten GG (1988) Productivity, stability, sustainability, equitability and autonomy as properties for agroecosystem assessment. Agric Sys 26:291–316. doi:10.1016/0308-521X(88)90046-7

    Google Scholar 

  • McIntosh RA (1998) Breeding wheat for resistance to biotic stresses. Euphytica 100:19–34. doi:10.1023/A:1018387402918

    Google Scholar 

  • Mengistu N, Baenziger PS, Nelson LA, Eskridge KM, Klein RN, Baltensperger DD, Elmore W (2010) Grain yield performance and stability of cultivar blends vs component cultivars of hard winter wheat in Nebraska. Crop Sci 50:617–623. doi:10.2135/cropsci2009.05.0280

    Google Scholar 

  • Messmer M, Hildermann I, Thorup-Kristensen K, Rengel Z (2012) Nutrient management in organic farming and consequences for direct and indirect selection strategies. In: Lammerts van Bueren ET, Myers JR (eds.) Organic crop breeding. Wiley-Blackwell, Hoboken, pp. 15–38. ISBN 978-0-470-95858-2

  • Midmore DJ (1993) Agronomic modification of resource use and intercrop productivity. Field Crops Res 34:357–380. doi:10.1016/0378-4290(93)90122-4

    Google Scholar 

  • Miedaner T, Wilde F, Korzun V, Ebmeyer E, Schmolke M, Hartl L, Schön C (2009) Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica 166:219–227. doi:10.1007/s10681-008-9832-0

    CAS  Google Scholar 

  • Milach SCK, Federizzi LC (2001) Dwarfing genes in plant improvement. Adv Agron 73:35–63. doi:10.1016/S0065-2113(01)73004-0

    CAS  Google Scholar 

  • Mille B, Belhaj Fraj M, Monod H, De Vallavieille-Pope C (2006) Assessing four-way mixtures of winter wheat cultivars from the performances of their two-way and individual components. Eur J Plant Pathol 114:163–173. doi:10.1007/s10658-005-4036-0

    Google Scholar 

  • Millennium Ecosystem Assessment (2003) Ecosystems and human well-being: a framework for assessment. Island, Washington DC, pp 53–61

    Google Scholar 

  • Mokany K, Ash J, Roxburh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate grassland. J Ecol 96:884–893. doi:10.1111/j.1365-2745.2008.01395.x

    Google Scholar 

  • Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosys Environ 127:7–21. doi:10.1016/j.agee.2008.02.013

    Google Scholar 

  • Morris RA, Garrity DP (1993a) Resource capture and utilization in intercropping: non-nitrogen nutrients. Field Crops Res 34:319–334. doi:10.1016/0378-4290(93)90120-C

    Google Scholar 

  • Morris RA, Garrity DP (1993b) Resource capture and utilization in intercropping: water. Field Crop Res 34:303–317. doi:10.1016/0378-4290(93)90119-8

    Google Scholar 

  • Motzo R, Giunta F, Pruneddu G (2007) The response of rate and duration of grain filling to long-term selection for yield in Italian durum wheats. Crop and Pasture Science 61:162–169. doi:10.1071/CP09191

    Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257. doi:10.1038/nature11420

    CAS  PubMed  Google Scholar 

  • Mundt CC (2002a) Performance of wheat cultivars and cultivar mixtures in the presence of Cephalosporium stripe. Crop Prot 21:93–99. doi:10.1016/S0261-2194(01)00067-9

    Google Scholar 

  • Mundt CC (2002b) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Plant Physiol Plant Mol Biol 40:381–410. doi:10.1146/annurev.phyto.40.011402.113723

    CAS  Google Scholar 

  • Mundt CC, Cowger C, Garret KA (2002) Relevance of integrated disease management to resistance durability. Euphytica 124:245–252. doi:10.1023/A:1015642819151

    CAS  Google Scholar 

  • Murphy JP, Helsel DB, Elliot A, Thro AM, Frey KJ (1982) Compositional stability of an oat multiline. Euphytica 31:33–40. doi:10.1007/BF00028304

    Google Scholar 

  • Murphy KM, Campbell KG, Lyon SR, Jones SS (2007) Evidence of varietal adaptation to organic farming systems. Field Crops Res 102:172–177. doi:10.1016/j.fcr.2007.03.011

    Google Scholar 

  • Murphy KM, Dawson JC, Jones SS (2008) Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Field Crops Res 105:107–115. doi:10.1016/j.fcr.2007.08.004

    Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerance in wild relatives for wheat and barley improvement. Plant Cell Envir 33:670–685. doi:10.1111/j.1365-3040.2009.02107.x

    CAS  Google Scholar 

  • Newton AC, Guy DC (2009) The effect of uneven, patchy cultivar mixture on disease control and yield in winter barley. Field Crops Res 110:225–228. doi:10.1016/j.fcr.2008.09.002

    Google Scholar 

  • Newton AC, Begg GS, Swantson JS (2009) Deployment of diversity for enhanced crop function. Ann Appl Biol 154:309–322. doi:10.1111/j.1744-7348.2008.00303.x

    Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotirou M, Kovacs G, Larsson H, De Carvalho MAAP, Rubiales D, Russel J, Dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. Agron Sust Dev 30:237–269. doi:10.1051/agro/2009032

    Google Scholar 

  • Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crops Res 89:263–280. doi:10.1016/j.fcr.2004.02.005

    Google Scholar 

  • Olesen JE, Askegaard M, Rasmussen IA (2009) Winter cereal yield as affected by animal manure and green manure in organic arable fields. Eur J Agron 30:119–128. doi:10.1016/j.eja.2008.08.002

    Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112. doi:10.1016/j.eja.2010.11.003

    Google Scholar 

  • Olivera PD, Steffenson BJ (2009) Aegilops sharonensis: origin, genetics, diversity and potential for wheat improvement. Botany 87:740–756. doi:10.1139/B09-040

    CAS  Google Scholar 

  • Osman A, van den Brink L, Lammerts van Bueren E (2008) Comparing organic and conventional VCU testing for winter wheat in the Netherlands. In: Rey F, Fontaine L, Osman A, van Waes J (eds.) Proceedings of the COST ACTION 860–SUSVAR and ECO-PB Workshop on Value for Cultivation and Use testing of organic cereal varieties. What are the key issues? 28th and 29th February 2008, Brussels, Belgium. SUSVAR, COST, ECO-PB, ITAB, Paris, France, pp. 37–40 (full proceedings available at http://eco-pb.org)

  • Pang XP, Letey J (2000) Organic farming: challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci Soc Am J 64:247–253. doi:10.2136/sssaj2000.641247x

    CAS  Google Scholar 

  • Papaix J, Goyeau H, Du Cheyron P, Monod H, Lannou C (2011) Influence of cultivated landscape composition on variety resistance: an assessment based on wheat leaf rust epidemics. New Phytol 191:1095–1107. doi:10.1111/j.1469-8137.2011.03764.x

    PubMed  Google Scholar 

  • Parris K (2001) OECD agri-biodiversity indicators: background paper. In Agriculture and biodiversity: developing indicators for policy analysis. Proceedings from an OECD expert meeting, Zurich, Switzerland, November 2001, pp. 27–39

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu XG, Price GD, Condon AG, Furbank RT (2010) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467. doi:10.1093/jxb/erq304

    PubMed  Google Scholar 

  • Pereira MG, De Oliveira LO, Lee M (2000) QTL mapping and disease resistance in cereals. J New Seeds 2:1–21. doi:10.1300/J153v02n02_01

    Google Scholar 

  • Phillips SL, Wolfe MS (2005) Evolutionary plant breeding for low input systems. J Agric Sci 143:245–254. doi:10.1017/S0021859605005009

    Google Scholar 

  • Piepho HP (1998) Methods for comparing the yield stability of cropping systems—a review. J Agron Crop Sci 180:193–213. doi:10.1111/j.1439-037X.1998.tb00526.x

    Google Scholar 

  • Poggio S (2005) Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agric Ecosys Environ 109:48–58. doi:10.1016/j.agee.2005.02.019

    Google Scholar 

  • Pollnac FW, Maxwell BD, Menalled FD (2009) Weed community characteristics and crop performance: a neighbourhood approach. Weed Res 49:242–250. doi:10.1111/j.1365-3180.2009.00688.x

    Google Scholar 

  • Powell N, Ji X, Ravash R, Edlington J, Dolferus R (2012) Yield stability for cereals in a changing climate. Funct Plant Biol 39:539–552. doi:10.1071/FP12078

    Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46. doi:10.1111/j.1439-037X.2008.00341.x

    Google Scholar 

  • Prato T (2008) Accounting for risk and uncertainty in determining preferred strategies for adapting to future climate change. Mitig Adapt Strat Glob Change 13:47–60. doi:10.1007/s11027-007-9080-y

    Google Scholar 

  • Ransom JK, Endres GJ, Schatz BG (2007) Sustainable improvement of wheat yield potential: the role of crop management. J Agric Sci 145:55–61. doi:10.1017/S002185960600668X

    Google Scholar 

  • Rasmussen IA (2004) The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res 44:12–20. doi:10.1046/j.1365-3180.2003.00367.x

    Google Scholar 

  • Rasmusson DC (1991) A plant breeder’s experience with ideotype breeding. Field Crops Res 26:191–200. doi:10.1016/0378-4290(91)90035-T

    Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sust Dev 32:273–303. doi:10.1007/s13593-011-0022-4

    Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Google Scholar 

  • Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in Europe: the importance of farm level responses. Eur J Agron 32:91–102. doi:10.1016/j.eja.2009.06.003

    Google Scholar 

  • Reis EM, Casa RT, Bianchin V (2011) Control of plant disease by crop rotation. Summa Phytopathol 37:85–91. doi:10.1590/S0100-54052011000300001

    Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918. doi:10.1093/jxb/erp016

    CAS  PubMed  Google Scholar 

  • Rhoné B, Vitalis R, Goldringer I, Bonnin I (2010) Evolution of flowering time in experimental wheat populations: a comprehensive approach to detect genetic signatures of natural selection. Evolution; Int J Org Evol 64:2110–2125. doi:10.1111/j.1558-5646.2010.00970.x

    Google Scholar 

  • Schmidt O, Curry JP (1999) Effects of earthworms on biomass production, nitrogen allocation and nitrogen transfer in wheat-clover intercropping model systems. Plant Soil 214:187–198. doi:10.1023/A:1004723914623

    CAS  Google Scholar 

  • Schmidt O, Clements RO, Donaldson G (2003) Why do cereal-legume intercrops support large earthworms populations? Appl Soil Ecol 22:181–190. doi:10.1016/S0929-1393(02)00131-2

    Google Scholar 

  • Sedgley RH (1991) An appraisal of the Donald ideotype after 21 years. Field Crops Res 26:93–112. doi:10.1016/0378-4290(91)90031-P

    Google Scholar 

  • Shavrukov Y, Langridge P, Tester M, Nevo E (2010) Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breeding Sci 60:426–435. doi:10.1270/jsbbs.60.426

    Google Scholar 

  • Siahpoosh MR, Dehghanian E, Kamgar A (2011) Drought tolerance evaluation of bread wheat genotypes using water use efficiency, evapotranspiration efficiency and drought susceptibility index. Crop Sci 51:1198–1204. doi:10.2135/cropsci2010.05.0243

    Google Scholar 

  • Singer JW, Casler MD, Kohler KA (2006) Wheat effect on frost-seeded red clover cultivar establishment and yield. Agron J 98:265–269. doi:10.2134/agronj2005.003

    Google Scholar 

  • Stagnari F, Onofri A, Codianni P, Pisante M (2013) Durum wheat varieties in N-deficient environments and organic farming: a comparison of yield, quality and stability performances. Plant Breed 132:266–275. doi:10.1111/pbr.12044

    CAS  Google Scholar 

  • Stern WR (1993) Nitrogen fixation and transfer in intercrop systems. Field Crops Res 34:335–356. doi:10.1016/0378-4290(93)90121-3

    Google Scholar 

  • Stützel H, Aufhammer W (1990) The physiological causes of mixing effects in cultivar mixtures: a general hypothesis. Agric Sys 32:41–53. doi:10.1016/0308-521X(90)90029-P

    Google Scholar 

  • Suneson CA (1956) An evolutionary plant breeding method. Agron J 48:188–191. doi:10.2134/agronj1956.00021962004800040012x

    Google Scholar 

  • Sylvester-Bradley R, Kindred DR (2009) Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J Exp Bot 60:1939–1951. doi:10.1093/jxb/erp116

    CAS  PubMed  Google Scholar 

  • Thapa R, Carver BF, Horn GW, Goad CL (2010) Genetic differentiation of winter wheat populations following exposure to two management systems in early inbreeding generations. Crop Sci 50:591–601. doi:10.2135/cropsci2009.05.0234

    Google Scholar 

  • Thorsted MD, Olesen JE, Weiner J (2006a) Width of clover strips and wheat rows influence grain yield in winter wheat in winter wheat/white clover intercropping. Field Crops Res 95:280–290. doi:10.1016/j.fcr.2005.04.001

    Google Scholar 

  • Thorsted MD, Olesen JE, Weiner J (2006b) Mechanical control of clover improves nitrogen supply and growth of wheat in winter wheat/white clover intercropping. Eur J of Agron 24:149–155. doi:10.1016/j.eja.2005.07.004

    CAS  Google Scholar 

  • Thorup-Kristensen K, Majid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302. doi:10.1016/S0065-2113(02)79005-6

    Google Scholar 

  • Thorup-Kristensen K, Salmerón Cortasa M, Loges R (2009) Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses? Plant Soil 322:101–114. doi:10.1006/s11104-009-9898-z

    CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Recih P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. doi:10.1126/science.277.5330.1300

    CAS  Google Scholar 

  • Tooker JF, Frank SD (2012) Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J Appl Ecol 49:974–985. doi:10.1111/j.1365-2664.2012.02173.x

    Google Scholar 

  • Tosti G, Guiducci M (2010) Durum wheat-faba bean temporary intercropping: effects on nitrogen supply and wheat quality. Eur J Agron 33:157–165. doi:10.1016/j.eja.2010.05.001

    CAS  Google Scholar 

  • Trenbath BR (1993) Intercropping for the management of pests and diseases. Field Crops Res 34:381–405. doi:10.1016/0378-4290(93)90123-5

    Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265. doi:10.2135/cropsci2007.08.0477

    Google Scholar 

  • Tsubo M, Walker S, Mukhala E (2001) Comparisons of radiation use efficiency of mono-/intercropping systems with different row orientation. Field Crops Res 71:17–29. doi:10.1016/S0378-4290(01)00142-3

    Google Scholar 

  • Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23. doi:10.1023/A:1017562909881

    Google Scholar 

  • Vandermeer J, Lawrence D, Symstad A, Hobbie S (2002) Effect of biodiversity on ecosystem functioning in managed ecosystems. In: Loreau M, Naeem S, Inchausti P (eds.) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, London, pp. 221–242.

  • Vasilakoglou I, Dhima K, Lithourgidis AS, Eleftherohorinos I (2008) Competitive ability of winter cereal-common vetch intercrops against sterile oat. Exp Agric 44:509–520. doi:10.1017/S0014479708006728

    Google Scholar 

  • Vera CL, Hox SL, DePauw RM, Smith MAH, Wise IL, Clarke FR, Procunier JD, Lukow OM (2013) Relative performance of resistant wheat varietal blends and susceptible cultivars exposed to wheat midge, Sitodiplosis mosellana (Géhin). Can J Plant Sci 93(1):59–66. doi:10.4141/cjps2012-019

    CAS  Google Scholar 

  • Wetterich F (2001) Biological diversity of livestock and crops: useful classification and appropriate agri-environmental indicators. In Agriculture and biodiversity: developing indicators for policy analysis. Proceedings from an OECD expert meeting, Zurich, Switzerland, November 2001, pp. 40–55

  • Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement and a practice. A review. Agron Sust Dev 29:503–515. doi:10.1051/agro/2009004

    Google Scholar 

  • Whitlock RAJ, Grime JP, Burke T (2010) Genetic variation in plant morphology contributes to the species-level structure of grassland communities. Ecology 91:1344–1354. doi:10.1890/08-2098.1

    PubMed  Google Scholar 

  • Whitmore AP, Schröder JJ (2007) Intercropping reduces nitrate leaching from under field crops without loss of yield: a modeling study. Eur J of Agron 27:81–88. doi:10.1016/j.eja.2007.02.004

    CAS  Google Scholar 

  • Winkler L, Howlett S, Döring T (2013) Minutes from the plenary discussion: taking evolutionary breeding into the future. In Döring T, Howlett S, Winkler L, Wolfe MS (eds.) Proceedings of the International Symposium on Evolutionary Breeding in Cereals, Aston University, Birmingham (UK), 21 January 2013. The Organic Research Centre, Hamstead Marshall, UK, pp. 20–21 (full proceedings available at http://orgprints.org/22440/)

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Phylos Trans R Soc B 363:703–716. doi:10.1098/rstb.2007.2179

    CAS  Google Scholar 

  • Woldeamlak A, Grando S, Maatougui M, Ceccarelli S (2008) Hanfets, a barley and wheat mixture in Eritrea: yield, stability and farmer preferences. Field Crops Res 109:50–56. doi:10.1016/j.fcr.2008.06.007

    Google Scholar 

  • Wolfe MS (2000) Crop strength through diversity. Nature 406:681–682. doi:10.1038/35021152

    CAS  PubMed  Google Scholar 

  • Wolfe MS, Minchin PN, Slater SE (1987) Control of barley mildew by integrating the use of varietal resistance and seed-applied fungicides. In Cavalloro R (2000) Integrated Crop Protection in Cereals. Brussels: Commission of the European Community. pp. 229–236

  • Wolfe MS, Hinchsliffe KE, Clarke SM, Jones H, Haigh Z (2006) Evolutionary breeding of healthy wheat: from plot to farm. Aspects of applied biology 79, what will organic farmers deliver? COR 2006, pp. 47–50

  • Wolfe MS, Baresel J, Desclaux D, Goldringer I, Hoad S, Kovacs G, Löschenberger F, Miedaner T, Østergård H, Lammerts van Bueren E (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323–346. doi:10.1007/s10681-008-9690-9

    Google Scholar 

  • Wolfe MS, Jones H, Howlett S, Pearce H, Winkler L, Crowley O, Döring T (2013) Adaptive winter wheat populations in the UK: selected results. In: Döring T, Howlett S, Winkler L, Wolfe MS (eds.) Proceedings of the International Symposium on Evolutionary Breeding in Cereals, Aston University, Birmingham (UK), 21 January 2013. The Organic Research Centre, Hamstead Marshall, UK, p. 7 (full proceedings available at http://orgprints.org/22440/)

  • Xie W, Nevo E (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614. doi:10.1007/s10681-008-9703-8

    Google Scholar 

  • Yapa L (1977) The Green Revolution: a diffusion model. Ann Assoc Am Geogr 67:350–359

    Google Scholar 

  • Yapa L (1993) What are improved seeds? An epistemology of the Green Revolution. Econ Geogr 69:254–273

    Google Scholar 

  • Zhou Y, Yu L, Zhang J, Lu Y (2008) Molecular approaches in improving the rice allelopathy. Allelopathy J 22:275–281

    Google Scholar 

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722. doi:10.1038/35021046

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work has been carried out with the support of the EU-funded Projects SOLIBAM (Grant agreement no. FP7-KBBE 245058) and OSCAR (Grant agreement no. FP7-KBBE 289277) and of the ERA-NET Core Organic II Project TILMAN-ORG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bàrberi.

About this article

Cite this article

Costanzo, A., Bàrberi, P. Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron. Sustain. Dev. 34, 327–348 (2014). https://doi.org/10.1007/s13593-013-0178-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0178-1

Keywords

Navigation