Agronomy for Sustainable Development

, Volume 34, Issue 2, pp 553–560 | Cite as

First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards

  • Fidel González-TorralvaEmail author
  • Javier Gil-Humanes
  • Francisco Barro
  • José A. Domínguez-Valenzuela
  • Rafael De Prado
Research Article


The glyphosate herbicide has been extensively used for long time periods in woody crops to control a broad range of weeds. The rapid determination of resistant weeds in different woody crops could maintain the efficacy of herbicides and could improve weed management using rotating strategies. Unfortunately Sumatran fleabane has developed a resistance to glyphosate. The mechanism of resistance of Sumatran fleabane is unknown so far. Therefore, here, we studied the resistance of a Sumatran fleabane biotype collected from a citrus orchard, under greenhouse and laboratory conditions. Our results show a resistance factor of 7.4. The resistant biotype absorbed and translocated lower amounts of 14C-glyphosate compared to the susceptible biotype. Moreover, at the molecular level, the target site sequence of the EPSPS2 gene showed a Pro-182-Thr substitution in the resistant biotype. As a consequence, this biotype uses mechanisms of reduced absorption–translocation and target site mutation to resist against glyphosate. This is the first study to report the reduced absorption and a mutation in the EPSPS2 gene in the resistance mechanism in the Conyza genus.


Glyphosate resistance Conyza sumatrensis Absorption Translocation EPSPSTarget site mutation Resistance mechanism 



The Monsanto Company and Spain’s MICINN Project (AGL2010-16774) supported this research. The authors thank Professor Fernando Bastida from Huelva University for his help in improving this manuscript and to Rafael Roldán-Gómez and Isabel M. Algaba García for technical assistance.


  1. Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275. doi: 10.1104/pp. 001560 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bostamam Y, Malone JM, Dolman FC, Boutsalis P, Preston C (2012) Rigid ryegrass (Lolium rigidum) populations containing a target site mutation in EPSPS and reduced glyphosate translocation are more resistant to glyphosate. Weed Sci 60:474–479. doi: 10.1614/WS-D-11-00154.1 CrossRefGoogle Scholar
  3. Carretero JL (2004) Flora arvense Española. Las malas hierbas de los cultivos Españoles. Phytoma, ValenciaGoogle Scholar
  4. Chodova D, Salava J, Martincová O, Cvikrova M (2009) Horseweed with reduced susceptibility to glyphosate found in the Czech Republic. J Agric Food Chem 57:6957–6961. doi: 10.1021/jf901292x PubMedCrossRefGoogle Scholar
  5. Cromartie TH, Polge ND (2000) An improved assay for shikimic acid and its use as a monitor for the activity of sulfosate. Proc Weed Sci Soc Am 40:291Google Scholar
  6. De Carvalho LB, Cruz-Hipolito H, González-Torralva F, Da Costa Aguiar Alves PL, Christoffoleti PJ, De Prado R (2011) Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Sci 59:171–176. doi: 10.1614/WS-D-10-00113.1 CrossRefGoogle Scholar
  7. De Carvalho LB, Alves PLDCA, González-Torralva F, Cruz-Hipolito HE, Rojano-Delgado AM, De Prado R, Gil-Humanes J, Barro F, Luque De Castro MD (2012) Pool of resistance mechanisms to glyphosate in Digitaria insularis. J Agric Food Chem 60:615–622. doi: 10.1021/jf204089d PubMedCrossRefGoogle Scholar
  8. Dinelli G, Marotti I, Bonetti A, Catizone P, Urbano JM, Barnes J (2008) Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res 48:257–265. doi: 10.1111/j.1365-3180.2008.00623.x CrossRefGoogle Scholar
  9. Feng PCC, Tran M, Chiu T, Sammons RD, Heck GR, Cajacob CA (2004) Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci 52:498–505. doi: 10.1614/WS-03-137R CrossRefGoogle Scholar
  10. Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. ACS, WashingtonGoogle Scholar
  11. Ge X, d’Avignon DA, Ackerman JJH, Douglas Sammons R (2010) Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag Sci 66:345–348. doi: 10.1002/ps.1911 PubMedCentralPubMedGoogle Scholar
  12. Ge X, D'Avignon DA, Ackerman JJH, Collavo A, Sattin M, Ostrander EL, Hall EL, Sammons RD, Preston C (2012) Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation. J Agric Food Chem 60:1243–1250. doi: 10.1021/jf203472s PubMedCrossRefGoogle Scholar
  13. González-Torralva F, Cruz-Hipolito H, Bastida F, Mülleder N, Smeda RJ, De Prado R (2010) Differential susceptibility to glyphosate among the Conyza weed species in Spain. J Agric Food Chem 58:4361–4366. doi: 10.1021/jf904227p PubMedCrossRefGoogle Scholar
  14. González-Torralva F, Gil-Humanes J, Barro F, Brants I, De Prado R (2012a) Target site mutation and reduced translocation are present in a glyphosate-resistant Lolium multiflorum Lam. biotype from Spain. Plant Physiol Biochem 58:16–22. doi: 10.1016/j.plaphy.2012.06.001 PubMedCrossRefGoogle Scholar
  15. González-Torralva F, Rojano-Delgado AM, Luque de Castro MD, Mülleder N, De Prado R (2012b) Two nontarget mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. J Plant Physiol 169:1673–1679. doi: 10.1016/j.jplph.2012.06.014 PubMedCrossRefGoogle Scholar
  16. Hao JH, Qiang S, Liu QQ, Cao F (2009) Reproductive traits associated with invasiveness in Conyza sumatrensis. J Syst Evol 47:245–254. doi: 10.1111/j.1759-6831.2009.00019.x CrossRefGoogle Scholar
  17. Heap I (2013) International survey of herbicide resistant weeds. Accessed 16 Feb 2013
  18. Hess M, Barralis G, Bleiholder H, Buhr L, Eggers T, Hack H, Stauss R (1997) Use of the extended BBCH scale—general for the descriptions of the growth stages of mono- and dicotyledonous weed species. Weed Res 37:433–441. doi: 10.1046/j.1365-3180.1997.d01-70.x CrossRefGoogle Scholar
  19. Michitte P, De Prado R, Espinoza N, Ruiz-Santaella JP, Gauvrit C (2007) Mechanisms of resistance to glyphosate in a ryegrass (Lolium multiflorum) biotype from Chile. Weed Sci 55:435–440. doi: 10.1614/WS-06-167.1 CrossRefGoogle Scholar
  20. Nol N, Tsikou D, Eid M, Livieratos IC, Giannopolitis CN (2012) Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Res 52:233–241. doi: 10.1111/j.1365-3180.2012.00911.x CrossRefGoogle Scholar
  21. Pline WA, Wilcut JW, Duke SO, Edmisten KL, Wells R (2002) Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J Agric Food Chem 50:506–512. doi: 10.1021/jf0110699 PubMedCrossRefGoogle Scholar
  22. Recasens J, Conesa JA (2009) Malas hierbas en plántula: guía de identificación. Edicions de la Universitat de Lleida. Lleida, EspañaGoogle Scholar
  23. Salas RA, Dayan FE, Pan Z, Watson SB, Dickson JW, Scott RC, Burgos NR (2012) EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Manag Sci 68:1223–1230. doi: 10.1002/ps.3342 PubMedCrossRefGoogle Scholar
  24. Steinruecken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212. doi: 10.1016/0006-291X(80)90547-1 CrossRefGoogle Scholar
  25. VanGessel MJ (2001) Glyphosate-resistant horseweed from Delaware. Weed Sci 49:703–705. doi: 10.1614/0043-1745(2001)049[0703:RPRHFD]2.0.CO;2 CrossRefGoogle Scholar
  26. Vila-Aiub MM, Balbi MC, Distéfano AJ, Fernández L, Hopp E, Yu Q, Powles SB (2012) Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag Sci 68:430–436. doi: 10.1002/ps.2286 PubMedCrossRefGoogle Scholar
  27. Walker S, Bell K, Robinson G, Widderick M (2011) Flaxleaf fleabane (Conyza bonariensis) populations have developed glyphosate resistance in north-east Australian cropping fields. Crop Prot 30:311–317. doi: 10.1016/j.cropro.2010.11.010 CrossRefGoogle Scholar
  28. Wang CJ, Liu ZQ (2007) Foliar uptake of pesticides—present status and future challenge. Pestic Biochem Physiol 87:1–8. doi: 10.1016/j.pestbp.2006.04.004 CrossRefGoogle Scholar
  29. Yu Q, Abdallah I, Han H, Owen M, Powles S (2009) Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta 230:713–723. doi: 10.1007/s00425-009-0981-8 PubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Fidel González-Torralva
    • 1
    Email author
  • Javier Gil-Humanes
    • 2
  • Francisco Barro
    • 2
  • José A. Domínguez-Valenzuela
    • 3
  • Rafael De Prado
    • 1
  1. 1.Agricultural Chemistry and Soil SciencesUniversity of CórdobaCórdobaSpain
  2. 2.Institute for Sustainable AgricultureSpanish National Research Council (IAS-CSIC)CórdobaSpain
  3. 3.Agricultural ParasitologyChapingo Autonomous UniversityChapingoMéxico

Personalised recommendations