Skip to main content

Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland

Abstract

It is widely assumed that agricultural practices have a major impact on soil living organisms. However, the impact of agricultural practices on soil microbes is poorly known, notably for species richness, evenness, and taxonomic composition. The taxonomic diversity and composition of soil indigenous microbial community can be assessed now using pyrosequencing, a high throughput sequencing technology applied directly to soil DNA. Here, we studied the effect of agriculture management on soil bacterial and fungal diversity in a tropical grassland ecosystem of northeastern Laos using 454 pyrosequencing of 16S and 18S rRNA genes. We studied soil microbial diversity of agricultural soils 3 years after conversion from native grasslands. We compared five systems: one tillage, two no-tillage rotational, one no-tillage improved pasture, and one natural grassland. Our results show first that compared to the natural grassland, tillage decreases fungal richness and diversity by −40 % and −19 %, respectively and increases bacterial richness and diversity by +46 % and +13 %, respectively. This finding evidences an early impact of agricultural management on soil microbial diversity. Such an impact fits with the ecological concept of "intermediate perturbation"—the hump-backed model—leading to classify agricultural practices according to the level of environmental stress they generate. We found also that land use modified soil microbial taxonomic composition. Compared to the natural pasture, tillage decreased notably the relative abundance of Actinobacteria (by −6 %), Acidobacteria (by −3 %) and Delta-proteobacteria (by −4 %) phyla, and by contrast increased the relative abundance of Firmicutes (by +6 %), Gamma-proteobacteria (by +11 %), and Chytridiomycota (+2 %) phyla. We conclude that soil microbial diversity can be modified and improved by selecting suitable agricultural practices. Moreover no-till systems represented intermediate situations between tillage and the natural pasture and appear therefore as a fair trade-off between the need for agriculture intensification and soil ecological integrity preservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40(11):2762–2770. doi:10.1016/j.soilbio.2008.07.022

    CAS  Article  Google Scholar 

  2. Bernard L, Mougel C, Maron P-A, Nowak V, Leveque J, Henault C, FeZ H, Berge O, Marol C, Balesdent J, Gibiat F, Lemanceau P, Ranjard L (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from C-13-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9(3):752–764. doi:10.1111/j.1462-2920.2006.01197.x

    CAS  PubMed  Article  Google Scholar 

  3. Bressan M, Mougel C, Dequiedt S, Maron P-A, Lemanceau P, Ranjard L (2008) Response of soil bacterial community structure to successive perturbations of different types and intensities. Environ Microbiol 10(8):2184–2187. doi:10.1111/j.1462-2920.2008.01641.x

    PubMed  Article  Google Scholar 

  4. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184(2):449–456. doi:10.1111/j.1469-8137.2009.03003.x

    CAS  PubMed  Article  Google Scholar 

  5. Bunemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44(4):379–406. doi:10.1071/sr05125

    Article  Google Scholar 

  6. Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240

    CAS  Article  Google Scholar 

  7. De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811, ISSN 0168–6445

    PubMed  Article  Google Scholar 

  8. Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric & Biol Eng 3(1):1–25

    Google Scholar 

  9. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364. doi:10.1890/05-1839

    PubMed  Article  Google Scholar 

  10. Giller KE, Witler E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Article  Google Scholar 

  11. Gleason FH, Letcher PM, McGee PA (2004) Some Chytridiomycota in soil recover from drying and high temperatures. Mycol Res 108:583–589. doi:10.1017/s0953756204009736

    PubMed  Article  Google Scholar 

  12. Govaerts B, Mezzalama M, Unno Y, Sayre KD, Luna-Guido M, Vanherck K, Dendooven L, Deckers J (2007) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil Ecol 37:18–30. doi:10.1016/j.apsoil.2007.03.006

    Article  Google Scholar 

  13. Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, Kemmitt S, Evershed RP, O’Donnell AG (2010) Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem 42:1624–1631

    CAS  Article  Google Scholar 

  14. Kandeler E (2007) Physiological and biochemical methods for studying soil biota and their function. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic Press, Burlington, pp 53–80

    Chapter  Google Scholar 

  15. Kladivko EJ (2001) Tillage systems and soil ecology. Soil & Tillage Res 61(1–2):61–76. doi:10.1016/s0167-1987(01)00179-9

    Article  Google Scholar 

  16. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120. doi:10.1128/aem.00335-09

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Lienhard P, Tivet F, Chabanne A, Dequiedt S, Lelièvre M, Sayphoummie S, Leudphanane B, Chemidlin Prévost-Bouré N, Séguy L, Maron P-A, Ranjard L (2013) No-till and cover crops shift soil microbial abundance and diversity in Laos tropical grasslands. Agron Sustain Dev 33(2):375–384. doi:10.1007/s13593-012-0099-4

    Article  Google Scholar 

  18. Mandic-Mulec I, Prosser J (2011) Diversity of endospore-forming bacteria in soil: characterization and driving mechanisms. In: Logan NA, Vos P (eds) Endospore-forming soil bacteria. Springer Berlin Heidelberg 27:31–59. doi:10.1007/978-3-642-19577-8_2

    Google Scholar 

  19. Maron P-A, Mougel C, Ranjard L (2010) Soil microbial diversity: methodological strategy, spatial overview and functional interest. C R Biologies 334(5–6):403–411. doi:10.1016/j.crvi.2010.12.003

    Google Scholar 

  20. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L (2007) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13(1):135–144

    Article  Google Scholar 

  21. Nicolardot B, Bouziri L, Bastian F, Ranjard L (2007) A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39(7):1631–1644. doi:10.1016/j.soilbio.2007.01.012

    CAS  Article  Google Scholar 

  22. Nishizawa T, Zhaorigetu KM, Sato Y, Kaneko N, Ohta H (2010) Molecular characterization of fungal communities in non-tilled, cover-cropped upland rice field soils. Microbes Environ 25(3):204–210. doi:10.1264/jsme2.ME10108

    PubMed  Article  Google Scholar 

  23. Ofek M, Hadar Y, Minz D (2012) Ecology of root colonizing Massilia (Oxalobacteraceae). PloS one 7(7). DOI: e40117.10.1371/journal.pone.0040117

  24. Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S, Mathieu O, Lévêque J, Mougel C, Henault C, Lemanceau P, Péan M, Boiry S, Fontaine S, Maron PA (2013) Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems (in press)

  25. Ranjard L, Richaume AS (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152(8):707–716. doi:10.1016/s0923-2508(01)01251-7

    CAS  PubMed  Article  Google Scholar 

  26. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290. doi:10.1038/ismej.2007.53

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569. doi:10.2136/sssaj2004.0347

    CAS  Article  Google Scholar 

  28. Stackebrandt E, Rainey FA, WardRainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47(2):479–491

    Article  Google Scholar 

  29. Terrat S, Christen R, Dequiedt S, Lelievre M, Nowak V, Regnier T, Bachar D, Plassart P, Wincker P, Jolivet C, Bispo A, Lemanceau P, Maron P-A, Mougel C, Ranjard L (2011) Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb Biotechnol 5(1):135–141. doi:10.1111/j.1751-7915.2011.00307.x

    PubMed Central  PubMed  Article  Google Scholar 

  30. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) Ade-4: a multivariate analysis and graphical display software.Statistics and. Computer 7:75–83

    Google Scholar 

  31. Tivet F, de Moraes Sa JC, Lal R, Briedis C, Borszowskei PR, dos Santos JB, Farias A, Eurich G, Hartman DDC, Nadolny Junior M (2013) Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil and Tillage Res 126:203–218. doi:10.1016/j.still.2012.09.004

    Article  Google Scholar 

  32. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R, Rahim RA, Husni MHA, Chun J, Adams JM (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol 64(2):474–484. doi:10.1007/s00248-012-0028-8

    PubMed  Article  Google Scholar 

  33. Wenzl P, Patino GM, Chaves AL, Mayer JE, Rao IM (2001) The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiol 125(3):1473–1484. doi:10.1104/pp.%20125.3.1473

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Yu Z, Wang G, Jin J, Liu J, Liu X (2011) Soil microbial communities are affected more by land use than seasonal variation in restored grassland and cultivated Mollisols in Northeast China. Eur J Soil Biol 47(6):357–363. doi:10.1016/j.ejsobi.2011.09.001

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sector-Based Program in Agroecology (PROSA), the French Development Agency (AFD), the French Global Environment Facility (FFEM), and the French Ministry of Foreign Affairs for their financial support. This work, through the involvement of technical facilities of the GenoSol platform of the infrastructure ANAEE-Services, received a grant from the French state through the National Agency for Research under the program “Investments for the Future” (reference ANR-11-INBS-0001), as well as a grant from the Regional Council of Burgundy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lionel Ranjard.

About this article

Cite this article

Lienhard, P., Terrat, S., Prévost-Bouré, N.C. et al. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 34, 525–533 (2014). https://doi.org/10.1007/s13593-013-0162-9

Download citation

Keywords

  • Microbial diversity
  • Soil metagenomics
  • Pyrosequencing
  • Conservation agriculture
  • Tillage
  • Acid savannah