Agronomy for Sustainable Development

, Volume 33, Issue 4, pp 721–732 | Cite as

Compost benefits for agriculture evaluated by life cycle assessment. A review

  • Julia Martínez-Blanco
  • Cristina Lazcano
  • Thomas H. Christensen
  • Pere Muñoz
  • Joan Rieradevall
  • Jacob Møller
  • Assumpció Antón
  • Alessio Boldrin
Review Article

Abstract

As compost use in agriculture increases, there is an urgent need to evaluate the specific environmental benefits and impacts as compared with other types of fertilizers and soil amendments. While the environmental impacts associated with compost production have been successfully assessed in previous studies, the assessment of the benefits of compost on plant and soil has been only partially included in few published works. In the present study, we reviewed the recent progresses made in the quantification of the positive effects associated to biowaste compost use on land by using life cycle assessment (LCA). A total of nine environmental benefits were identified in an extensive literature review and quantitative figures for each benefit were drawn and classified into short-, mid-, and long-term. The major findings are the following: (1) for nutrient supply and carbon sequestration, the review showed that both quantification and impact assessment could be performed, meaning that these two benefits should be regularly included in LCA studies. (2) For pest and disease suppression, soil workability, biodiversity, crop nutritional quality, and crop yield, although the benefits were proved, quantitative figures could not be provided, either because of lack of data or because the benefits were highly variable and dependent on specific local conditions. (3) The benefits on soil erosion and soil moisture could be quantitatively addressed, but suitable impact assessment methodologies were not available. (4) Weed suppression was not proved. Different research efforts are required for a full assessment of the benefits, apart from nutrient supply and carbon sequestration; additional impact categories—dealing with phosphorus resources, biodiversity, soil losses, and water depletion—may be needed for a comprehensive assessment of compost application. Several of the natural mechanisms identified and the LCA procedures discussed in the paper could be extensible to other organic fertilizers and compost from other feedstocks.

Keywords

Sustainable agriculture Environmental impact Organic fertilizer Biowaste Soil organic matter C sequestration Disease suppression Soil quality 

Notes

Acknowledgments

The authors would like to thank the Spanish Ministerio de Educación for the research scholarship (AP2008-02954) awarded to Julia Martínez Blanco and the financial support by an “Ángeles Alvariño” fellowship from Xunta de Galicia to Cristina Lazcano.

References

  1. Antón A, Castells F, Montero JI, Huijbregts M (2004) Comparison of toxicological impacts of integrated and chemical pest management in Mediterranean greenhouses. Chemosphere 54:1225–35. doi: 10.1016/j.chemosphere.2003.10.018 PubMedCrossRefGoogle Scholar
  2. Audsley E, Alber S, Clift R, Cowell S, Crettaz P, Gaillard G, Hausheer J, Jolliet O, Kleijn R, Mortensen B, Pearce D, Roger E, Teulon H, Weidema BP, Zeijts H (2003) Harmonisation of environmental life cycle assessment for agriculture. Final report concerted action AIR 3-CT94-2028:101Google Scholar
  3. Bastida F, Kandeler E, Moreno J, Ros M, García C, Hernández T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Applied Soil Ecol 40:318–329. doi: 10.1016/j.apsoil.2008.05.007 CrossRefGoogle Scholar
  4. Bengtsson J, Ahnström J, Weibull ANNC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269. doi: 10.1111/j.1365-2664.2005.01005.x CrossRefGoogle Scholar
  5. Berger M, Finkbeiner M (2010) Water footprinting: how to address water use in life cycle assessment? Sustainability 2:919–944. doi: 10.3390/su2040919 CrossRefGoogle Scholar
  6. Birkved M, Hauschild MZ (2006) PestLCI—a model for estimating field emissions of pesticides in agricultural LCA. Ecol Model 198:433–451. doi: 10.1016/j.ecolmodel.2006.05.035 CrossRefGoogle Scholar
  7. Boldrin A, Andersen JK, Moller J, Christensen TH, Favoino E (2009) Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Manage Res 27:800–812. doi: 10.1177/0734242X09345275 CrossRefGoogle Scholar
  8. Bonanomi G, Antignani V, Pane C, Scala E (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324Google Scholar
  9. Brentrup F (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology I. Theoretical concept of a LCA method tailored to crop production. Eur J Agronomy 20:247–264. doi: 10.1016/S1161-0301(03)00024-8 CrossRefGoogle Scholar
  10. Buratti C, Fantozzi F (2010) Life cycle assessment of biomass production: development of a methodology to improve the environmental indicators and testing with fiber sorghum energy crop. Biomass Bioenergy 34:1513–1522. doi: 10.1016/j.biombioe.2010.05.002 CrossRefGoogle Scholar
  11. Charles R, Jolliet O, Gaillard G (1998) Taking into account quality in the definition of functional unit and influence on the environmental optimisation of fertiliser level. In: Ceuterick D (ed) International Conference on Life Cycle Assessment in Agriculture, Agro-industry and Forestry, Proceedings, 3–4 December 1998. VITO, Brussels, pp 11–16Google Scholar
  12. Cluzeau D, Guernion M, Chaussod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N et al (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72. doi: 10.1016/j.ejsobi.2011.11.003 CrossRefGoogle Scholar
  13. Colón J, Cadena E, Pognani M, Barrena R, Sánchez A, Font X, Artola A (2012) Determination of the energy and environmental burdens associated with the biological treatment of source-separated municipal solid wastes. Energy Environ Sci 5(2):5731–5741. doi: 10.1039/C2EE01085B CrossRefGoogle Scholar
  14. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19:292–305. doi: 10.1016/j.gloenvcha.2008.10.009 CrossRefGoogle Scholar
  15. Cowell SJ, Clift R (2000) A methodology for assessing soil quantity and quality in life cycle assessment. J Clean Prod 8:321–331. doi: 10.1016/S0959-6526(00)00023-8 CrossRefGoogle Scholar
  16. Davis J, Haglund C (1999) Life cycle inventory (LCI) of fertiliser production. Fertiliser products used in Sweden and Western Europe. SIK-Report No. 654. Masters Thesis, Chalmers University of TechnologyGoogle Scholar
  17. De Bertoldi M (2010) Production and tilization of suppressive compost: environmental, food and health benefits. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at work: from wastes to resources. Springer, Heidelberg, Germany, pp 153–170CrossRefGoogle Scholar
  18. Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30:401–422. doi: 10.1051/agro/2009040 CrossRefGoogle Scholar
  19. Dijkman TJ, Birkved M, Hauschild MZ (2012) (2012) PestLCI 2.0: a second generation model for estimating emissions of pesticides from arable land in LCA. Int J Life Cycle Assess 17:973–986. doi: 10.1007/s11367-012-0439-2 CrossRefGoogle Scholar
  20. European Commission (2006) Impact assessment of the thematic strategy on soil SEC(2006)620Google Scholar
  21. Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manage Res 26:61–69. doi: 10.1177/0734242X08088584 CrossRefGoogle Scholar
  22. Goedkoop M, Spriensma R (2000) The Eco-Indicator 99. A damage oriented method for life cycle impact assessment. PRé Consultants BV, Amersfoort, The NetherlandsGoogle Scholar
  23. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A, Oers L, Wegener Sleeswijk A, Suh S, de Haes HA U, Bruijn H, Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, DordrechtGoogle Scholar
  24. Hansen TL, Bhander GS, Christensen TH, Bruun S, Jensen LS (2006) Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE). Waste Manage Res 24:153–166. doi: 10.1177/0734242X06063053 CrossRefGoogle Scholar
  25. Hargreaves J, Adl M, Warman P (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14. doi: 10.1016/j.agee.2007.07.004 CrossRefGoogle Scholar
  26. Hayashi K, Gaillard G, Nemecek T (2006) Life cycle assessment of agricultural production systems: current issues and future perspectives. In: Hu SH, Bejosano-Gloria C (eds) Good Agricultural Practice (GAP) in Asia and Oceania, pp 98–110Google Scholar
  27. Kounina A, Margni M, Bayart JB, Boulay AM, Berger M, Bulle C et al (2012) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess. doi: 10.1007/s11367-012-0519-3 Google Scholar
  28. Marmo L (2008) EU strategies and policies on soil and waste management to offset greenhouse gas emissions. Waste Manage 28:685–9. doi: 10.1016/j.wasman.2007.09.030 CrossRefGoogle Scholar
  29. Marshall KJ (2001) Functional units for food product life cycle assessments. In: Geerken T, Mattson B, Olsson P and Johansson, E (eds) Proceedings of the International Conference on LCA in foods. SIK-Dokument No. 143. The Swedish Institute for Food and Biotechnology, Gothenburg, pp 105–107Google Scholar
  30. Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manage 30:983–994. doi: 10.1016/j.wasman.2010.02.023 CrossRefGoogle Scholar
  31. Martínez-Blanco J, Antón A, Rieradevall J, Castellari M, Muñoz P (2011) Comparing nutritional value and yield as functional units in the environmental assessment of horticultural production with organic or mineral fertilization. Int J Life Cycle Assess 16:12–26. doi: 10.1007/s11367-010-0238-6 CrossRefGoogle Scholar
  32. Martínez-Blanco J, Lazcano C, Boldrin A, Muñoz P, Rieradevall J, Möller J, Antón A, Christensen TH (2013) Assessing the environmental benefits of compost use-on-land through an LCA perspective: a review. Sustainable Agriculture Reviews 12Google Scholar
  33. Mattsson B, Cederberg C, Blix L (2000) Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops. J Clean Prod 8:283–292. doi: 10.1016/S0959-6526(00)00027-5 CrossRefGoogle Scholar
  34. McLaughlin N, Gregorich E, Dwyer L, Ma B (2002) Effect of organic and inorganic soil nitrogen amendments on mouldboard plow draft. Soil Tillage Res 64:211–219. doi: 10.1016/S0167-1987(01)00270-7 CrossRefGoogle Scholar
  35. Milài Canals L, Dubreuil A, Gaillard G, Müller-Wenk R (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12:5–15. doi: 10.1065/lca2006.05.250 CrossRefGoogle Scholar
  36. Mourad AL, Coltro L, Oliveira P, Kletecke RM, Baddini J (2007) A simple methodology for elaborating the life cycle inventory of agricultural products. Int J Life Cycle Assess 12:408–413. doi: 10.1065/lca2006.09.272 Google Scholar
  37. Nemecek T, Dubois D, Huguenin-Elie O, Gaillard G (2011) Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agric Syst 104:217–232. doi: 10.1016/j.agsy.2010.10.002 CrossRefGoogle Scholar
  38. Núñez M, Pfister S, Antón A, Muñoz P, Hellweg S, Koehler A, Rieradevall J (2012a) Assessing the environmental impacts of water consumption by energy crops grown in Spain. J Industrial Ecology 17:90–102. doi: 10.1111/j.1530-9290.2011.0049.x Google Scholar
  39. Núñez M, Antón A, Muñoz P, Rieradevall J (2012b) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops grown in Spain. Int J Life Cycle Assess 18:755–767. doi: 10.1007/s11367-012-0525-5 Google Scholar
  40. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part I: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300. doi: 10.1007/s11367-008-0009-9 CrossRefGoogle Scholar
  41. Rosenbaum RK, Bachmann TM, Swirsky L, Huijbregts MAJ, Jolliet O, Juraske R et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546. doi: 10.1007/s11367-008-0038-4 CrossRefGoogle Scholar
  42. ROU (2007) Life cycle inventory and life cycle assessment for windrow composting systems. NSW Department of Environment and Conservation. The University of New South Wales, Sydney, AustraliaGoogle Scholar
  43. Saad R, Margni M, Koellner T, Wittstock B, Deschenes L (2011) Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess 16:198–211. doi: 10.1007/s11367-011-0258-x CrossRefGoogle Scholar
  44. Schau EM, Fet AM (2008) LCA studies of food products as background for environmental product declarations. Int J Life Cycle Assess 13:255–264. doi: 10.1065/lca2007.12.372 CrossRefGoogle Scholar
  45. Sikora LJ, Szmidt R (2004) Chapter 14: nitrogen sources, mineralization rates, and nitrogen nutrition benefits to plants from composts. In: Kahn BA, Stoffella PJ (eds) Compost utilization in horticultural cropping systems. CRC Press Lewis Publ, New York, pp 287–305Google Scholar
  46. Suer P, Andersson-Sköld Y (2011) Biofuel or excavation?-Life cycle assessment (LCA) of soil remediation options. Biomass Bioenergy 35:969–981. doi: 10.1016/j.biombioe.2010.11.022 CrossRefGoogle Scholar
  47. Syers JK, Johnston AE, Curtin D (2008) FAO fertilizer and plant nutrition bulletin 18: Efficiency of soil and fertilizer phosphorus use. Reconciling changing concepts of soil phosphorus behaviour with agronomic information. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  48. Udo de Haes H (2006) How to approach land use in LCIA or, how to avoid the Cinderella effect? Int J Life Cycle Assess 11:219–221. doi: 10.1065/lca2006.07.257 CrossRefGoogle Scholar
  49. Weidema BP, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. Final report of the EURENVIRON-LCAGAPS sub-project on land use. Department of Manufacturing Engineering and Management, Technical University of Denmark, LyngbyGoogle Scholar
  50. Zhang Y, Baral A, Bakshi BR (2010) Accounting for ecosystem services in life cycle assessment, part II: toward an ecologically based LCA. Environ Sci Technol 44:2624–2631. doi: 10.1021/es900548a PubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Julia Martínez-Blanco
    • 1
  • Cristina Lazcano
    • 2
    • 3
  • Thomas H. Christensen
    • 4
  • Pere Muñoz
    • 5
  • Joan Rieradevall
    • 1
    • 6
  • Jacob Møller
    • 4
  • Assumpció Antón
    • 5
    • 7
  • Alessio Boldrin
    • 4
  1. 1.Institute of Environmental Science and Technology (ICTA)Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  2. 2.Centro Tecnológico del Mar-Fundación CETMARVigoSpain
  3. 3.Department of Land, Air and Water ResourcesUniversity of California DavisDavisUSA
  4. 4.Department of Environmental EngineeringTechnical University of DenmarkLyngbyDenmark
  5. 5.Institute of Agri-food Research and Technology (IRTA)CabrilsSpain
  6. 6.Department of Chemical EngineeringUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  7. 7.Departament d’Enginyeria QuímicaUniversitat Rovira i Virgili (URV)TarragonaSpain

Personalised recommendations