Agronomy for Sustainable Development

, Volume 33, Issue 4, pp 795–807 | Cite as

Why wheat farmers could reduce chemical inputs: evidence from social, economic, and agronomic analysis

  • Stéfanie Nave
  • Florence Jacquet
  • Marie-Hélène Jeuffroy
Research Article


Though European policies recommend pesticide reduction, most farmers still manage their crops with a high level of chemical inputs, notably in arable crop-based systems. Factors influencing farmers’ practices and the reasons why they do not adopt alternative techniques are not well-known. Actual reports on that topic are based on monodisciplinary analyses either in agronomy, sociology, or economics, whereas farmers’ motives are most probably manifold. Therefore, we surveyed winter wheat agricultural practices to understand the factors influencing the choice of crop management plans implemented by farmers. We interviewed 71 farmers in the French Department of Eure-et-Loir. Results revealed three main types of practices depending on inputs and wheat yield: (1) 29 % of farmers use low levels of inputs and get low yield, (2) 38 % of farmers use medium levels of inputs and get high yield, (3) 33 % of farmers use high levels of inputs and get medium yield. We found that the medium-input type is the most efficient with better economic results whatever the wheat price. On the other hand, the high-input type has a lower economic performance. We showed that farm profile, individual motives, and social commitments explain the level of input use. High-input practices are often implemented by farmers who have less family labor availability and who rarely join extension groups, whereas low-input practices are conducted by farmers bearing civic responsibilities and showing environmental awareness. The novelty of our study is to use a multidisciplinary analysis to take into account agronomic, social, and economic factors.


Crop management plan Low-input systems Winter wheat Farmer typology 



The authors thank the students from the DA AGRECINA (ecology and agronomic innovations) of Agricultural Engineering Schools of ESA Angers and ISARA Lyon, who conducted the surveys, and their professor Marie Mawois, as well as local institutions (cooperatives, Chamber of Agriculture, and advice organizations) for giving their time to students, and farmers who took part in the survey. We also want to thank Claire Lamine and Marianne Cerf for their contribution to this work. This research was done with the financial support of ANR Systerra—Popsy program (ANR 08-STRA 12).


  1. Abadi Ghadim AK, Pannell DJ (1999) A conceptual framework of adoption of an agricultural innovation. Agric Econ 21:145–154. doi: 10.1016/S0169-5150(99)00023-7 CrossRefGoogle Scholar
  2. Arellanes P, Lee DR (2003) The determinants of adoption of sustainable agriculture technologies: evidence from the hillsides of Honduras. Proceedings of the 25th International Conference of Agricultural Economists (IAAE). 16–22 August 2003, Durban, South AfricaGoogle Scholar
  3. Aubertot JN, Barbier JM, Carpentier A, Gril JJ, Guichard L, Lucas P, Savary S, Savini I, Voltz M (2005) Pesticides, agriculture and the environment. Reducing the use of pesticides and limiting their environmental impact. Summary of the Collective Scientific Expert Report INRA and Cemagref, FranceGoogle Scholar
  4. Bagheri A, Shabanali Fami H, Rezvanfar A, Asadi A, Yazdani S (2008) Perceptions of paddy farmers towards sustainable agricultural technologies: case of Haraz catchments area in Mazandaran province of Iran. Am J Applied Sci 5(10):1384–1391. doi: 10.3844/ajassp.2008.1384.1391 CrossRefGoogle Scholar
  5. Blazy JM, Ozier-Lafontaine H, Doré T, Thomas A, Wery J (2009) A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe. Agric Syst 101:30–41. doi: 10.1016/j.agsy.2009.02.004 CrossRefGoogle Scholar
  6. Boussemart JP, Leleu H, Ojo O (2011) Could society’s willingness to reduce pesticide use be aligned with farmers’ economic self-interest? Ecolog Econ 70:1797–1804. doi: 10.1016/j.ecolecon.2011.05.005 CrossRefGoogle Scholar
  7. Bürger J, de Mol F, Gerowitt B (2012) Influence of cropping system factors on pesticide use intensity—a multivariate analysis of on-farm data in North East Germany. Eur J Agron 40:54–63. doi: 10.1016/j.eja.2012.02.008 CrossRefGoogle Scholar
  8. Burton M, Rigby D, Young T (1999) Analysis of the determinants of adoption of organic horticultural techniques in the UK. J Agr Econ 50(1):47–63. doi: 10.1111/j.1477-9552.1999.tb00794.x CrossRefGoogle Scholar
  9. Butault JP, Dedryver CA, Gary C, Guichard L, Jacquet F, Meynard JM, Nicot P, Pitrat M, Reau R, Sauphanor B, Savini I, Volay T (2010) Écophyto R&D. Quelles voies pour réduire l’usage des pesticides ? Synthèse du rapport d’étude, INRA Editeur (France), 90 p.Google Scholar
  10. Carolan MS (2005) Barriers to the adoption or sustainable agriculture on rented land: an examination of contesting social fields. Rural Sociol 70(3):387–413. doi: 10.1526/0036011054831233 CrossRefGoogle Scholar
  11. Cerf M, Guillot MN, Olry P (2011) Acting as a change agent in supporting sustainable agriculture: how to cope with new professional situations? The J Agr Educ Ext 17(1):7–19. doi: 10.1080/1389224X.2011.536340 CrossRefGoogle Scholar
  12. Charles R, Jolliet O, Gaillard G, Pellet D (2006) Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agr Ecosyst Environ 113:216–225. doi: 10.1016/j.agee.2005.09.014 CrossRefGoogle Scholar
  13. Chikowo R, Faloya V, Petit S, Munier-Jolain NM (2009) Integrated Weed Management systems allow reduced reliance on herbicides and long-term weed control. Agr Ecosyst Environ 132:237–242. doi: 10.1016/j.agee.2009.04.009
  14. Colbach N, Lucas P, Meynard JM (1997) Influence of wheat crop management on take-all development and infection cycles. Phytopathology 87:26–32PubMedCrossRefGoogle Scholar
  15. Comer S, Ekanem E, Muhammad S, Singh SP, Tegegne F (1999) Sustainable and conventional farmers: a comparison of socio-economic characteristics, attitude and beliefs. J Sustain Agr 15(1):29–45. doi: 10.1300/J064v15n01_04 CrossRefGoogle Scholar
  16. Ducos G, Dupraz P, Bonnieux F (2009) Agri-environment contract adoption under fixed and variable compliance costs. J envir Plann Mgmt 52(5):669–687CrossRefGoogle Scholar
  17. De Souza Filho HM, Young T, Burton MP (1999) Factors influencing the adoption of sustainable agricultural technologies: evidence from the State of Espı́rito Santo, Brazil. Technol Forecast Soc Change 60:97–112. doi: 10.1016/S0040-1625(98)00040-7 CrossRefGoogle Scholar
  18. Edwards-Jones G (2006) Modelling farmer decision-making: concepts, progress and challenges. Anim Sci 82:783–790. doi: 10.1017/ASC2006112 CrossRefGoogle Scholar
  19. Eltun R, Korsæth A, Nordheim O (2002) A comparison of environmental, soil fertility, yield, and economical effects in six cropping systems based on an 8-year experiment in Norway. Agr Ecosyst Environ 90:155–168. doi: 10.1016/S0167-8809(01)00198-0 CrossRefGoogle Scholar
  20. Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis, 5th edn. Wiley, New YorkCrossRefGoogle Scholar
  21. Feder G, Just RE, Zilberman D (1985) Adoption of agricultural innovations in developing countries: a survey. Econ Devel Cult Change 33(2):255–298CrossRefGoogle Scholar
  22. Hubbell BJ, Carlson GA (1998) Effects of insecticide attributes on within-season insecticide product and rate choices: the case of U.S. apple growers. Amer J Agr Econ 80:382–396. doi: 10.2307/1244510 CrossRefGoogle Scholar
  23. Jacquet F, Butault JP, Guichard L (2011) An economic analysis of the possibility of reducing pesticides in French field crops. Ecolog Econ 70:1638–1648. doi: 10.1016/j.ecolecon.2011.04.003 CrossRefGoogle Scholar
  24. Joffre OM, Bosma RH (2009) Typology of shrimp farming in Bac Lieu Province, Mekong Delta, using multivariate statistics. Agr Ecosyst Environ 132:153–159. doi: 10.1016/j.agee.2009.03.010 CrossRefGoogle Scholar
  25. Kohler U, Kreuter F (2012) Data Analysis Using Stata, 3rd edn. Stata Press, College StationGoogle Scholar
  26. Kuhfuss L, Jacquet F, Préget R, Thoyer S (2012) Le dispositif des MAEt: une fausse bonne idée ? Revue d’Etude en Agriculture et Environnement 93(4):395–411CrossRefGoogle Scholar
  27. Lamine C, Meynard JM, Bui S, Messéan A (2010) Réductions d’intrants: des changements techniques, et après? Effets de verrouillage et voies d’évolution à l’échelle du système agri-alimentaire. Innovations Agronomiques 8:121–134Google Scholar
  28. Loyce C, Meynard JM, Bouchard C, Rolland B, Lonnet P, Bataillon P, Bernicot MH, Bonnefoy M, Charrier X, Debote B, Demarquet T, Duperrier B, Félix I, Heddadj D, Leblanc O, Leleu M, Mangin P, Méausoone M, Doussinault G (2008) Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield. Crop Prot 27:1131–1142. doi: 10.1016/j.cropro.2008.02.001 CrossRefGoogle Scholar
  29. Loyce C, Meynard JM, Bouchard C, Rolland B, Lonnet P, Bataillon P, Bernicot M, Bonnefoy M, Charrier X, Debote B, Demarquet T, Duperrier B, Félix I, Heddadj D, Leblanc O, Leleu M, Mangin P, Méausoone M, Doussinault G (2012) Growing winter wheat cultivars under different management intensities in France: a multicriteria assessment based on economic, energetic and environmental indicators. Field Crops Res 125:167–178. doi: 10.1016/j.fcr.2011.08.007 CrossRefGoogle Scholar
  30. Marra M, Pannell DJ, Abadi Ghadim A (2003) The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve? Agric Sys 75:215–234. doi: 10.1016/S0308-521X(02)00066-5 CrossRefGoogle Scholar
  31. Meynard JM, Girardin P (1991) Produire autrement. Courrier de la Cellule Environnement INRA 15:1–19Google Scholar
  32. Pingault N, Pleyber E, Champeaux C, Guichard L, Omon B (2009) Produits phytosanitaires et protection intégrée des cultures: l’indicateur de fréquence de traitement (IFT). Agreste - Notes et études socio-économiques 32:61–94Google Scholar
  33. Région Centre (2010) Document régional de développement rural (DRDR). Programme de développement rural 2007–2013. Version 4, p 345Google Scholar
  34. Rivaud A, Mathé J (2011) Les enjeux cognitifs du défi environnemental dans les exploitations agricoles. Econ Rurale 323:21–35CrossRefGoogle Scholar
  35. Tatlidil FF, Boz I, Tatlidil H (2009) Farmers’ perception of sustainable agriculture and its determinants: a case study in Kahramanmaras province of Turkey. Environ Dev Sustain 11(6):1091–1106. doi: 10.1111/j.1574-0864.2005.00305.x CrossRefGoogle Scholar
  36. Vereijken P (1989) From integrated control to integrated farming, an experimental approach. Agr Ecosyst Environ 26:37–43. doi: 10.1016/0167-8809(89)90036-4 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Stéfanie Nave
    • 1
  • Florence Jacquet
    • 2
  • Marie-Hélène Jeuffroy
    • 3
    • 4
  1. 1.INRA UMR Economie PubliqueThiverval-GrignonFrance
  2. 2.INRA UMR 1110 MoisaMontpellierFrance
  3. 3.INRA UMR 211 AgronomieThiverval-GrignonFrance
  4. 4.AgroParisTech UMR 211 AgronomieThiverval-GrignonFrance

Personalised recommendations