Agronomy for Sustainable Development

, Volume 33, Issue 4, pp 839–846 | Cite as

A new micelle-based method to quantify the Tween 80® surfactant for soil remediation

  • Emmanuel Mousset
  • Nihal Oturan
  • Eric D. van Hullebusch
  • Gilles Guibaud
  • Giovanni Esposito
  • Mehmet A. OturanEmail author
Research Article


Tween 80® is a surfactant widely employed to enhance remediation of contaminated soils. Actually, there are few convenient and selective methods to quantify Tween 80® at low concentrations. Here, we report a new and simple quantification method to monitor Tween 80® analysis. Our method is based on the enhancement of the fluorescence of 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS) by formation of micelles with Tween 80®. Results show a linear calibration curve with a correlation coefficient R 2 of 0.99, a detection limit of 0.13 mM and a quantification limit of 0.19 mM. This method showed better performances compared to actual methods such as UV absorbance and total organic carbon measurements. In addition, we demonstrated that the measurements using this new technique are impacted only at 3.5 % maximum by the presence of oxidation by-products formed during oxidation of Tween 80® by the electro-Fenton process or by hydrophobic organic contaminants present in solution. Fluorescence measurements of soil washing solution with real contaminated soil show almost no impact on Tween 80®–TNS micelle analysis. The analytical method proposed for Tween 80® analysis could replace the currently used conventional method because it is quite simple, highly sensitive and more selective.


Micelle Fluorescence quantification Soil organic matter Hydrophobic organic contaminants By-products Electro-Fenton 



The authors would like to thank the European Commission for providing financial support through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments) under the grant agreement FPA no 2010-0009. Emmanuel Mousset is a Doctoral Research Fellow of the ETeCoS3 programme.


  1. Ahn CK, Kim YM, Woo SH, Park JM (2008) Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J Hazard Mater 154:153–160. doi: 10.1016/j.jhazmat.2007.10.006 PubMedCrossRefGoogle Scholar
  2. Alcantara MT, Gomez J, Pazos M, Sanroman MA (2008) Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation. Chemosphere 70:1438–1444. doi: 10.1016/j.chemosphere.2007.08.070 PubMedCrossRefGoogle Scholar
  3. Brillas E, Sires I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev 109:6570–6631. doi: 10.1021/cr900136g PubMedCrossRefGoogle Scholar
  4. Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. doi: 10.1021/es034354c PubMedCrossRefGoogle Scholar
  5. Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH (1999) Surfactant selection for enhancing ex situ soil washing. Water Res 33:351–360. doi: 10.1016/S0043-1354(98)00234-6 CrossRefGoogle Scholar
  6. Edwards DA, Liu Z (1994) Surfactant solubilization of organic compounds in soil/aqueous systems. J Environ Eng 120:5–22. doi: 10.1061/(ASCE)0733-9372(1994)120:1(5) CrossRefGoogle Scholar
  7. Gao YZ, Ling WT, Zhu LZ, Zhao BW, Zheng QS (2007) Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere 17:409–418. doi: 10.1016/S1002-0160(07)60050-2 CrossRefGoogle Scholar
  8. Gascon M, Morales E, Sunyer J, Vrijheid M (2013) Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ Int 52:51–65. doi: 10.1016/j.envint.2012.11.005 PubMedCrossRefGoogle Scholar
  9. Gomez J, Alcantara MT, Pazos M, Sanroman MA (2010) Remediation of polluted soil by a two-stage treatment system: desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent. J Hazard Mater 173:794–798. doi: 10.1016/j.jhazmat.2009.08.103 PubMedCrossRefGoogle Scholar
  10. Hanna K, Chiron S, Oturan MA (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res 39:2763–2773. doi: 10.1016/j.watres.2005.04.057 PubMedCrossRefGoogle Scholar
  11. Ko SO, Schlautman MA (1998) Partitioning of hydrophobic organic compounds to sorbed surfactants. 2. Model development/predictions for surfactant-enhanced remediation applications. Environ Sci Technol 32:2776–2781. doi: 10.1021/es9710767 CrossRefGoogle Scholar
  12. Ko SO, Schlautman MA, Carraway ER (1998) Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. Experimental studies. Environ Sci Technol 32:2769–2775. doi: 10.1021/es971075e CrossRefGoogle Scholar
  13. Lopez-Vizcaino R, Saez C, Canizares P, Rodrigo MA (2012) The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Sep Purif Technol 88:46–51. doi: 10.1016/j.seppur.2011.11.038 CrossRefGoogle Scholar
  14. Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380. doi: 10.1016/S0013-7952(00)00117-4 CrossRefGoogle Scholar
  15. Oliveri IP, Di Bella S (2011) Highly sensitive fluorescent probe for detection of alkaloids. Tetrahedron 67:9446–9449. doi: 10.1016/j.tet.2011.09.100 CrossRefGoogle Scholar
  16. Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2, 4-D. J Appl Electrochem 30:475–482. doi: 10.1023/A:1003994428571 CrossRefGoogle Scholar
  17. Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58. doi: 10.1016/j.cis.2007.11.001 PubMedCrossRefGoogle Scholar
  18. Rosas JM, Vicente F, Santos A, Romero A (2011) Enhancing p-cresol extraction from soil. Chemosphere 84:260–264. doi: 10.1016/j.chemosphere.2011.03.071 PubMedCrossRefGoogle Scholar
  19. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  20. Rouessac F, Rouessac A, Cruché D (2004) Analyse chimique—Méthodes et techniques instrumentales modernes. Dunod, ParisGoogle Scholar
  21. Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72:382–394. doi: 10.1016/j.apcatb.2006.11.016 CrossRefGoogle Scholar
  22. Torres LG, Lopez RB, Beltran M (2012) Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Phys Chem Earth 37–39:30–36. doi: 10.1016/j.pce.2011.02.003 Google Scholar
  23. Wang P, Keller AA (2008) Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system. Environ Sci Technol 42:3381–3387. doi: 10.1021/es702732g PubMedCrossRefGoogle Scholar
  24. Yang RH, Wang KM, Xiao D, Yang XH, Li HM (2000) A selective optical chemical sensor for the determination of Tween-60 based on fluorescence enhancement of tetraphenylporphyrin. Anal Chim Acta 404:205–211. doi: 10.1016/S0003-2670(99)00715-1 CrossRefGoogle Scholar
  25. Yeom IT, Ghosh MM, Cox CD, Robinson KG (1995) Micellar solubilization of polynuclear aromatic hydrocarbons in coal tar-contaminated soils. Environ Sci Technol 29:3015–3021. doi: 10.1021/es00012a019 PubMedCrossRefGoogle Scholar
  26. Young TE, Synovec RE (1996) Enhanced surfactant determination by ion-pair formation using flow-injection analysis and dynamic surface tension detection. Talanta 43:889–899. doi: 10.1016/0039-9140(95)01762-3 PubMedCrossRefGoogle Scholar
  27. Zhang D, Zhu L (2012) Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environ Pollut 164:169–174. doi: 10.1016/j.envpol.2012.01.036 PubMedCrossRefGoogle Scholar
  28. Zhu L, Zhou W (2008) Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants. Environ Pollut 152:130–137. doi: 10.1016/j.envpol.2007.05.001 PubMedCrossRefGoogle Scholar
  29. Zhu H, Fan J, Lu J, Hu M, Cao J, Wang J, Li H, Liu X, Peng X (2012) Optical Cu2+ probe bearing an 8-hydroxyquinoline subunit: high sensitivity and large fluorescence enhancement. Talanta 93:55–61. doi: 10.1016/j.talanta.2012.01.024 PubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Emmanuel Mousset
    • 1
  • Nihal Oturan
    • 1
  • Eric D. van Hullebusch
    • 1
  • Gilles Guibaud
    • 2
  • Giovanni Esposito
    • 3
  • Mehmet A. Oturan
    • 1
    Email author
  1. 1.Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEMLVMarne-la-ValléeFrance
  2. 2.Groupement de Recherche Eau Sol Environnement (EA 4330), Faculté des Sciences et TechniquesUniversité de LimogesLimoges CedexFrance
  3. 3.Department of Civil and Mechanical EngineeringUniversity of Cassino and the Southern LazioCassinoItaly

Personalised recommendations