Skip to main content

Advertisement

Log in

Novel methods to assess environmental, economic, and social sustainability of main agricultural regions in China

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

In China, dramatic changes of land use since 1980 have induced environmental and socioeconomic problems threatening food security. Therefore, improving sustainability of land use in China is of utmost importance, especially in agricultural regions. So far, few investigations have analyzed sustainability at small scales in China. Here, we propose a methodological framework for assessing the sustainability level of main agricultural regions in China on regional and county levels. We distinguish four sustainability categories: environmental, economic, social, and comprehensive sustainability. Two methods of measuring sustainability were used: (1) the balanced performance method that measures balanced performance among different aspects and (2) the aggregate achievement method that measures aggregate achievement of all aspects. Spatial variation maps of sustainability across counties were produced using a geographic information system, and the limiting factors in each region were identified. Results show that the two methods give highly different values of sustainability levels. The balanced performance method yields lower sustainability values ranging from 0.06 to 0.57, whereas the aggregate achievement method yields higher sustainability values ranging from 0.11 to 0.87. Such differences have not been addressed in previous studies. Using the balanced performance method, the Sichuan Basin is the most comprehensive sustainability region with a 0.05 level, while Xinjiang is the least comprehensive sustainability region with a 0.01 level. Using the aggregate achievement method, the middle reaches of the Yangtze River and Jianghuai region is the most comprehensive sustainability area with a 0.46 level, whereas South China is the least comprehensive sustainability area with a 0.31 level. Sensitivity analysis showed that Songnen and Sanjiang Plains were more sensitive to the indicator selection and aggregation rules. Scale effects were not observed for sustainability assessment at the regional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreoli M, Tellarini V (2000) Farm sustainability evaluation: methodology and practice. Agric Ecosyst Environ 77:43–52. doi:10.1016/S0167-8809(99)00091-2

    Article  Google Scholar 

  • Barrett CB (2010) Measuring food insecurity. Science 327:825–828. doi:10.1126/science.1182768

    Article  PubMed  CAS  Google Scholar 

  • Bell S, Morse S (2008) Sustainability indicators: measuring the immeasurable? Earthscan, London

    Google Scholar 

  • Bockstaller C, Girardin P (2003) How to validate environmental indicators. Agric Syst 76:639–653. doi:10.1016/S0308-521X(02)00053-7

    Article  Google Scholar 

  • Boyd DR (2001) Canada vs. the OECD: An Environmental Comparison. EcoResearch Law and Policy. University of Victoria, http://www.environmentalindicators.com/htdocs/PDF/CanadavsOECD.pdf. Accessed 10 May 2012

  • Cai Y, Barry S (1994) Sustainability in agriculture: a general review. Agric Ecosyst Environ 49:299–307. doi:10.1016/0167-8809(94)90059-0

    Article  Google Scholar 

  • Dantsis T, Douma C, Giourga C et al (2010) A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol Indic 10:256–263. doi:10.1016/j.ecolind.2009.05.007

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. doi:10.1126/science.1185383

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Limón JA, Riesgo L (2009) Alternative approaches to the construction of a comprehensive indicator of agricultural sustainability: an application to irrigated agriculture in the Duero basin in Spain. J Environ Manag 90:3345–3362. doi:10.1016/j.jenvman.2009.05.023

    Article  Google Scholar 

  • Guitouni A, Martel JM (1998) Tentative guidelines to help choosing an appropriate MCDA method. Eur J Oper Res 109:501–521

    Article  Google Scholar 

  • Jiang L, Tong Y, Zhao Z et al. (2003) Impacts of population migration on land degradation in Tarim River Basin, Xinjiang of China. Paper presented at the Annual Meeting of the Population Association of America, May 1–3, Minneapolis, US

  • Jin S (1983) The application of regression equation in the determination of reasonable fertilizer application amount. Gansu Agric Sci Technol 11:9–13 (in Chinese)

    Google Scholar 

  • Kong W, Ou M (2006) Study on the state of cultivated land and its sustainable use in Shandong province. China Popul, Resour Environ 16:44–48 (in Chinese)

    Google Scholar 

  • Liu J, Liu M, Tian H et al (2005) Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ 98:442–456. doi:10.1016/j.rse.2005.08.012

    Article  Google Scholar 

  • Liu D, Wang Z, Song K et al (2009) Land use/cover changes and environmental consequences in Songnen Plain, Northeast China. Chinese Geogr Sci 19:299–305. doi:10.1007/s11769-009-0299-2

    Article  Google Scholar 

  • Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20:703–726

    Article  Google Scholar 

  • Meul M, Van Passel S, Nevens F et al (2008) MOTIFS: a monitoring tool for integrated farm sustainability. Agron Sustain Dev 28:321–332. doi:10.1051/agro:2008001

    Article  Google Scholar 

  • Meul M, Nevens F, Reheul D (2009) Validating sustainability indicators: focus on ecological aspects of Flemish dairy farms. Ecol Indic 9:284–295. doi:10.1016/j.ecolind.2008.05.007

    Article  Google Scholar 

  • Nardo M, Saisana M, Saltelli A et al. (2008) Handbook on constructing comprehensive indicators: methodology and user guide. OECD Statistics Working Paper 2005/3, OECD Publishing. doi:10.1787/18152031

  • National Agricultural Regionalization Commission (1981) China’s comprehensive agricultural regionalization. Agricultural Press, Beijing, in Chinese

    Google Scholar 

  • Roy R, Chan NW (2012) An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis. Environmentalist 32:99–110. doi:10.1007/s10669-011-9364-3

    Article  Google Scholar 

  • Shu G, Zhou YX, Zhang MH et al (2001) A sustainable agro-ecological solution to water shortage in the North China Plain (Huabei Plain). J Environ Plan Manage 44:345–355. doi:10.1080/09640560120046106

    Article  Google Scholar 

  • Tao F, Yokozawa M, Liu J et al (2009) Climate change, land use change, and China’s food security in the twenty-first century: an integrated perspective. Clim Chang 93:433–445. doi:10.1007/s10584-008-9491-0

    Article  Google Scholar 

  • TexaSoft (2011) WINKS SDA Software, vol 7. TexaSoft, Cedar Hill

    Google Scholar 

  • Van Cauwenbergh N, Biala K, Bielders C et al (2007) SAFE—a hierarchical framework for assessing the sustainability of agricultural systems. Agric Ecosyst Environ 120:229–242. doi:10.1016/j.agee.2006.09.006

    Article  Google Scholar 

  • Van Passel S, Nevens F, Mathijs E et al (2007) Measuring farm sustainability and explaining differences in sustainable efficiency. Ecol Econ 62:149–161. doi:10.1016/j.ecolecon.2006.06.008

    Article  Google Scholar 

  • Wu K, Huang R (2001) The sustainable evaluations, the development potentialities and the countermeasures of water and land resources use in the Huang-Huai-Hai Plain. Sci Geogr Sin 21:390–395 (in Chinese)

    Google Scholar 

  • Yang G (2001) The process and driving forces of change in arable-land area in the Yangtze River Delta during the past 50 years. J Nat Resour 16:121–127 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

This study has been funded by the National Natural Science Foundation of China (no. 41071065). The authors thank Lanhai Li Professor and Yang Yang for their valuable and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqi Zhang.

About this article

Cite this article

Liu, F., Zhang, H. Novel methods to assess environmental, economic, and social sustainability of main agricultural regions in China. Agron. Sustain. Dev. 33, 621–633 (2013). https://doi.org/10.1007/s13593-012-0131-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0131-8

Keywords

Navigation