Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production

Abstract

Conventional agricultural systems depend on high inputs of fertilizers and toxic pesticides that are a threat for human health and the environment. Such issues are rapidly changing agriculture in Europe. As a consequence sustainable production systems are currently developed as safer alternatives, for instance organic and low-input systems use of mechanical and biological methods versus toxic substances. However, there is a lack of knowledge on the overall impact of these alternative systems on toxicity, energy use, and global warming, notably for perennial crops such as apple orchards, which require the control of many pests. Here we present the first analysis of the environmental impacts of nine apple orchard systems using life cycle analysis. We used data from a survey of apple orchard systems located in Southern France, covering 2006–2009. Conventional, low-input, and organic orchards were planted with three apple cultivars differing in their disease susceptibility, hence designing nine apple systems, with the Golden Delicious conventional system being considered as the reference. Our results show that low-input systems planted with low disease susceptibility Melrose cultivar decreased environmental impacts by 6–99 %. Organic systems had one of the highest impacts per mass unit due to low yields, but showed low impacts per area unit planted with low-susceptibility cultivars generally. Potential toxicity was decreased by 2–40 % for human, 71–82 % for aquatic life, and 97–99 % for terrestrial life using mechanical control versus toxic pesticides to control weeds and diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agence BIO (Agence Française pour le Développement et la Promotion de l’Agriculture Biologique) (2011) http://www.agencebio.org/upload/pagesEdito/fichiers/CC_Ed2011_Chap3.pdf

  2. Anton A, Castells F, Montero JI, Huijbregts M (2004) Comparison of toxicological impacts of integrated and chemical pest management in Mediterranean greenhouses. Chemosphere 54(8):1225–1235. doi:10.1016/j.chemosphere.2003.10.018

    PubMed  Article  CAS  Google Scholar 

  3. Boulard T, Raeppel C, Brun R, Lecompte F, Hayer F, Carmassi G, Gaillard G (2011) Environmental impact of greenhouse tomato production in France. Agron Sustain Dev 31:757–777. doi:10.1007/s13593-011-0031-3

    Article  CAS  Google Scholar 

  4. Bowen JK, Mesarich CH, Bus VGM, Beresford RM, Plummer KM, Templeton MD (2011) Venturia inaequalis: the causal agent of apple scab. Mol Plant Pathol 12(2):105–122. doi:10.1111/j.1364-3703.2010.00656.x

    PubMed  Article  Google Scholar 

  5. Cowell SJ, Clift R (1997) Impact assessment for life cycle assessments involving agricultural production. Int J LCA 2(2):99–103

    Article  Google Scholar 

  6. FAO (Food and Agriculture Organization) (2008) http://faostat.fao.org/default.aspx

  7. Footprint PPDB (2007) The FOOTPRINT Pesticide Properties Database. Collated by the University of Hertfordshire as part of the EU-Funded FOOTPRINT project (FP6-SSP-022704). Available at: http://www.eu-footprint.org/ppdb.html

  8. Gaillard G, Nemecek T (2009) Swiss Agricultural Life Cycle Assessment (SALCA): an integrated environmental assessment concept for agriculture Proceedings of the Conference on integrated assessment of agriculture and sustainable development: Setting the Agenda for Science and Policy (AgSAP 2009). Hotel Zuiderduin, Egmond aan Zee, The Netherlands, 10–12 March 2009:134–135

  9. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener SA, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Weidema BP (2001) Life cycle assessment: an operational guide to the ISO standards. Ministry of Housing, Spatial Planning and Environment, Den Haag

    Google Scholar 

  10. Gutsche V, Rossberg D (1997) SYNOPS 11: a model to assess and to compare the environmental risk potential of active ingredients in plant protection products. Agric Ecosyst Environ 64(2):181–188. doi:10.1016/S0167-8809(97)00037-6

    Article  Google Scholar 

  11. Haas G, Wetterich F, Kopke U (2001) Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric Ecosyst Environ 83(1–2):43–53. doi:10.1016/S0167-8809(00)00160-2

    Article  Google Scholar 

  12. Hauschild M, Wenzel H (1998) In: Chapman and Hall (ed) Environmental assessment of products: scientific background, 1st edn. Thomson Science, London, p 584

    Google Scholar 

  13. Hayer F, Gaillard G (2010) Aquatic and terrestrial ecotoxicity as well as human toxicity characterisation factors for pesticide emissions to soil according to the methods USES-LCA and EDIP. Available at: http://wwwagroscopeadminch/oekobilanzen/01197/indexhtml?lang=de

  14. Hischier R, Weidema B, Althaus HJ, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerinick Y, Margni M, Nemecek T (2009) Implementation of life cycle impact assessment methods. In: Hischier et Weidema (Ed) Ecoinvent report, Vol Datav21, Dübendorf, p 176

  15. IPCC (Intergovernmental Panel on Climate Change) (2007) Fourth assessment report: Climate change. 27th session of the IPCC in Valencia, Spain

  16. Kramer SB, Reganold JP, Glover JD, Bohannan BJM, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci U S A 103(12):4522–4527. doi:10.1073/pnas.0600359103

    PubMed  Article  CAS  Google Scholar 

  17. Letourneau DK, Bothwell SG (2008) Comparison of organic and conventional farms: challenging ecologists to make biodiversity functional. Front Ecol Environ 6(8):430–438. doi:10.1890/070081

    Article  Google Scholar 

  18. Lyth M (1985) Hypersensitivity in apple to feeding by Dysaphis plantaginea: effects on aphid biology. Ann Appl Biol 107(2):155–161. doi:10.1111/j.1744-7348.1985.tb01559.x

    Article  Google Scholar 

  19. Macrae RJ, Lynch D, Martin RC (2010) Improving energy efficiency and GHG mitigation potentials in Canadian organic farming systems. J Sustain Agric 34(5):549–580. doi:10.1080/10440046.2010.484704

    Article  Google Scholar 

  20. Malavolta C, Cross J (2009) Guidelines for integrated production of pome fruits. In: IOBC Technical Guideline III Bulletin IOBC/wprs 48. p 13

  21. Maluche-Baretta CRD, Klauberg O, do Amarante CVT, Ribeiro GM, Almeida D (2007) Microbiological and chemical soil attributes in apple orchards under conventional and organic production systems in TH state of Santa Catarina, Brazil. Rev Bras Cienc Solo 31:655–665

    Article  CAS  Google Scholar 

  22. Milài Canals L, Burnip GM, Cowell SJ (2006) Evaluation of the environmental impacts of apple production using life cycle assessment (LCA): case study in New Zealand. Agric Ecosyst Environ 114(2–4):226–238. doi:10.1016/j.agee.2005.10.023

    Article  Google Scholar 

  23. Mouron P, Scholz RW, Nemecek T, Weber O (2006) Life cycle management on Swiss fruit farms: relating environmental and income indicators for apple-growing. Ecol Econ 58(3):561–578. doi:10.1016/j.agee.2005.11.020

    Article  Google Scholar 

  24. Nemecek T, Dubois D, Huguenin-Elie O, Gaillard G (2011) Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agric Syst 104:217–232. doi:10.1016/j.agsy.2010.10.002

    Article  Google Scholar 

  25. Nemecek T, Gaillard G (2010) Challenges in assessing the environmental impacts of crop production and horticulture. In: JB Sonesson (Ed) Environmental assessment and management in the food industry—life cycle assessment and related approaches, Vol 194. Oxford, pp 98–116

  26. Nemecek T, Heil A, Huguenin O, Meier S, Erzinger S, Blaser S, Zimmermann A (2004) Life cycle inventories of agricultural production systems. FAL, Swiss Federal Research Station for Agroecology and Agriculture, Zurich

    Google Scholar 

  27. Peck GM, Andrews PK, Reganold JP, Fellman JK (2006) Apple orchard productivity and fruit quality under organic, conventional, and integrated management. Hortscience 41(1):99–107

    CAS  Google Scholar 

  28. Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55. doi:10.1111/j.1365-2389.2010.01342.x

    Article  CAS  Google Scholar 

  29. Roussos PA, Gasparatos D (2009) Apple tree growth and overall fruit quality under organic and conventional orchard management. Sci Hortic 123(2):247–252. doi:10.1016/j.scienta.2009.09.011

    Article  Google Scholar 

  30. Sauphanor B, Dirwimmer C, Boutin S, Chaussabel AL, Dupont N, Fauriel J, Gallia V, Lambert N, Navarro E, Parisi L, Plenet D, Ricaud V, Sagnes JL, Sauvaitre D, Simon S, Speich P, Zavagli F (2009) Analyse comparative de différents systèmes en arboriculture fruitière. In: INRA (ed) Ecophyto R&D: vers des systèmes de culture économes en produits phytosanitaires. Rapport d’expertise Inra, Tome IV

  31. Simon S, Brun L, Guinaudeau J, Sauphanor B (2011) Pesticide use in current and innovative apple orchard systems. Agron Sustain Dev 31(3):541–555. doi:10.1007/s13593-011-0003-7

    Article  CAS  Google Scholar 

  32. Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts?—a meta-analysis of European research. J Environ Manage 112:309–320. doi:10.1016/j.jenvman.2012.08.018

    PubMed  Article  CAS  Google Scholar 

  33. Vogeler I, Cichota R, Sivakumaran S, Deurer M, McIvor I (2006) Soil assessment of apple orchards under conventional and organic management. Aust J Soil Res 44(8):745–752. doi:10.1071/sr06096

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff members of Gotheron experimental unit in charge of the management of the orchards and especially C. Gros, K. Morel, K. Traverse, J. Guinaudeau, and F. Merlin for their contribution to the management of pests and diseases in the orchards, and T. Girad, L. Galet, O. Guibert, D. Riotord, and P. Ascensio. We thank A. Hélias and C. Bussi for their helpful comments on an earlier draft of the manuscript. Constructive comments from two anonymous reviewers have improved the clarity of the paper and are also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aude Alaphilippe.

About this article

Cite this article

Alaphilippe, A., Simon, S., Brun, L. et al. Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production. Agron. Sustain. Dev. 33, 581–592 (2013). https://doi.org/10.1007/s13593-012-0124-7

Download citation

Keywords

  • Apple orchard
  • Conventional
  • Organic
  • Low input
  • Life cycle assessment
  • Environmental performance