Agronomy for Sustainable Development

, Volume 33, Issue 2, pp 349–354 | Cite as

Improved field margins highly increase slug activity in Switzerland

  • Lisa Eggenschwiler
  • Bernhard Speiser
  • Andreas Bosshard
  • Katja Jacot
Research Article

Abstract

Most field margins on arable land in Switzerland are narrow and intensively managed. As a consequence, field margins generally harbour few plant and animal species. To enhance biodiversity in arable landscapes, sown species-rich field margins, so-called improved field margins, were introduced in 2008 as a part of the Swiss agri-environment scheme. Here, we tested whether improved field margins increase slug activity density. Slug activity density in and next to improved field margins was compared to slug activity in and next to conventional field margins. Over a period of 3 years, slugs were sampled in three regions in northern Switzerland in late spring using bait stations. Our results show that improved field margins have higher slug activity density, of +191 %, than conventional field margins, independently of the region. The predominant slugs were Arion lusitanicus and Deroceras spp. While A. lusitanicus was generally more abundant in field margins than in fields, with intermediate numbers in the adjacent crop margins, Deroceras spp. showed a more even distribution.

Keywords

Arion lusitanicus Deroceras spp. Pest slug Agri-environment scheme Crop protection Semi-natural habitat Ecological infrastructure 

References

  1. Bader S (2004) Die extreme Sommerhitze im aussergewöhnlichen Witterungsjahr 2003. Arbeitsbericht 200, MeteoSchweiz. http://www.bafu.admin.ch/klima/00509/00514/index.html. Accessed 14 Sept 2011
  2. Barker GM (2004) Natural enemies of terrestrial molluscs. CABI Publishing, Biddles Ltd, King’s LynnCrossRefGoogle Scholar
  3. Briner T, Frank T (1998) The palatability of 78 wildflower strip plants to the slug Arion lusitanicus. Ann Appl Biol 133:123–133. doi:10.1111/j.1744-7348.1998.tb05808.x CrossRefGoogle Scholar
  4. Calame F (2000) Dynamique de populations de limaces à la périphérie et à l'intérieur d’une parcelle cultivée. Rev Suisse Agric 32:11–13Google Scholar
  5. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer CC, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi:10.1038/nature03972 PubMedCrossRefGoogle Scholar
  6. Cook RT, Bailey SER, McCrohan CR (1996) Slug preferences for winter wheat cultivars and common agricultural weeds. J Appl Ecol 33:866–872. doi:10.2307/2404957 CrossRefGoogle Scholar
  7. Frank T (1998a) Slug damage and numbers of slugs in oilseed rape bordering on grass strips. J Molluscan Stud 64:461–466. doi:10.1093/mollus/64.4.461 CrossRefGoogle Scholar
  8. Frank T (1998b) Slug damage and numbers of the slug pests, Arion lusitanicus and Deroceras reticulatum, in oilseed rape grown beside sown wildflower strips. Agric Ecosyst Environ 67:67–78. doi:10.1016/S0167-8809(97)00108-4 CrossRefGoogle Scholar
  9. Friedli J, Frank T (1998) Reduced applications of metaldehyde pellets for reliable control of the slug pests Arion lusitanicus and Deroceras reticulatum in oilseed rape adjacent to sown wildflower strips. J Appl Ecol 35:504–513. doi:10.1046/j.1365-2664.1998.3540504.x CrossRefGoogle Scholar
  10. Griffiths J, Phillips DS, Compton SG, Wright C, Incoll LD (1998) Responses of slug numbers and slug damage to crops in a silvoarable agroforestry landscape. J Appl Ecol 35:252–260CrossRefGoogle Scholar
  11. Grimm B (2001) Life cycle and population density of the pest slug Arion lusitanicus Mabille (Mollusca: Pulmonata) on grassland. Malacologia 43:25–32Google Scholar
  12. Grimm B, Paill W (2001) Spatial distribution and home-range of the pest slug Arion lusitanicus (Mollusca: Pulmonata). Acta Oecol Int J Ecol 22:219–227. doi:10.1016/S1146-609X(01)01115-8 CrossRefGoogle Scholar
  13. Hof AR, Bright PW (2010) The impact of grassy field margins on macro-invertebrate abundance in adjacent arable fields. Agric Ecosyst Environ 139:2805–283. doi:10.1016/j.agee.2010.08.01 CrossRefGoogle Scholar
  14. Hunter PJ (1968) Studies on slugs of arable ground: I. Sampling methods. Malacologia 6:369–377Google Scholar
  15. Iglesias J, Speiser B (2001) Distribution of Arion hortensis s.s. and Arion distinctus in Northern Switzerland. J Molluscan Stud 67:209–214. doi:10.1093/mollus/67.2.209 CrossRefGoogle Scholar
  16. Jacot K, Eggenschwiler L, Junge X, Luka H, Bosshard A (2007) Improved field margins for a higher biodiversity in agricultural landscapes. Asp Appl Biol 81:277–283Google Scholar
  17. MacLeod A, Wratten SD, Sotherton NW, Thomas MB (2004) ‘Beetle banks’ as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric For Entomol 6:147–154. doi:10.1111/j.1461-9563.2004.00215.x CrossRefGoogle Scholar
  18. MeteoSchweiz (2011) Climate data. https://gate.meteoswiss.ch/idaweb. Accessed 4 Jul 2011
  19. Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222. doi:10.1016/S0167-8809(99)00130-9 CrossRefGoogle Scholar
  20. R-Development-Core-Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  21. South A (1992) Terrestrial slugs. Biology, ecology, control. Chapman and Hall, LondonCrossRefGoogle Scholar
  22. Speiser B, Niederhauser D (1997) Fördern extensive Wieslandstreifen Schneckenschäden? Agrarforschung 4:179–180Google Scholar
  23. Speiser B, Glen D, Piggott S, Ester A, Davies K, Castillejo J, Coupland J (2001) Slug damage and control of slugs in horticultural crops. FiBL, Frick, BrochureGoogle Scholar
  24. Théato C (2002) Field margins as ecological compensation areas? Bull Geobot Inst ETH 68:109–110Google Scholar
  25. Voss MC, Ulber B, Hoppe HH (1998) Impact of reduced and zero tillage on activity and abundance of slugs in winter oilseed rape. Z Pflanzenkrankh Pflanzenschutz 105:632–640Google Scholar
  26. Willis JC, Bohan DA, Choi Y, Semenov M, Brown VK, Gussin E (2003) Comparison of slug population dynamics at five sites in the UK. In: Dussart GBJ (ed) Slugs and snails—agricultural, veterinary and environmental perspectives. Page Bros, Norwich, pp 171–176Google Scholar
  27. Zweifel R (1998) Effects of sown wildflower strips on spatial and temporal dynamics of different slug species in reduced tillage winter wheat. Master Thesis, Geobotanical Institute ETH, ZurichGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Lisa Eggenschwiler
    • 4
  • Bernhard Speiser
    • 2
  • Andreas Bosshard
    • 3
  • Katja Jacot
    • 1
  1. 1.Agroscope Reckenholz-Tänikon Research Station ARTZurichSwitzerland
  2. 2.Research Institute of Organic Agriculture FiBLFrickSwitzerland
  3. 3.Institute of Environmental Sciences, University of ZurichZurichSwitzerland
  4. 4.Christoph Merian FoundationBaselSwitzerland

Personalised recommendations