Skip to main content

Advertisement

Log in

Sustainability assessment of GM crops in a Swiss agricultural context

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The aim of this study was to provide an ex ante assessment of the sustainability of genetically modified (GM) crops under the agricultural conditions prevailing in Switzerland. The study addressed the gaps in our knowledge relating to (1) the agronomic risks/benefits in production systems under Swiss conditions (at field and rotation/orchard level), (2) the economic and socio-economic impacts associated with altered farming systems, and (3) the agro-ecological risks/benefits of GM crops (at field and rotation/orchard level). The study was based on an inventory of GM crops and traits which may be available in the next decade, and on realistic scenarios of novel agricultural practices associated with the use of GM crops in conventional, integrated, and organic farming systems in Switzerland. The technology impact assessment was conducted using an adapted version of the matrix for “comparative assessment of risks and benefits for novel agricultural systems” developed for the UK. Parameter settings were based on information from literature sources and expert workshops. In a tiered approach, sustainability criteria were defined, an inventory of potentially available, suitable GM crops was drawn up, and scenarios of baseline and novel farming systems with GM crops were developed and subsequently submitted to economic, socio-economic, and agro-ecological assessments. The project had several system boundaries, which influenced the outcomes. It was limited to the main agricultural crops used for food and feed production and focused on traits that are relevant at the field level and are likely to be commercially available within a decade from the start of the project. The study assumed that there would be no statutory restrictions on growing GM crops in all farming systems and that they would be eligible for direct payments in the same way as non-GM crops. Costs for co-existence measures were explicitly excluded and it was assumed that GM foods could be marketed in the same way as non-GM foods at equal farm gate prices. The following model GM crops were selected for this study: (1) GM maize varieties with herbicide tolerance (HT), and with resistance to the European corn borer (Ostrinia nubilalis) and the corn rootworm (Diabrotica virgifera); (2) HT wheat; (3) GM potato varieties with resistance to late blight (Phytophthora infestans), to the nematode Globodera spp., and to the Colorado beetle (Leptinotarsa decemlineata); (4) HT sugar beet with resistance to “rhizomania” (beet necrotic yellow vein virus; BNYVV); (5) apples with traditionally bred or GM resistance to scab (Venturia inaequalis), and GM apples with stacked resistance to scab and fire blight (Erwinia amylovora). Scenarios for arable rotations and apple orchards were developed on the basis of the model crops selected. The impact assessments were conducted for the entire model rotations/orchards in order to explore cumulative effects as well as effects that depend on the farming systems (organic, integrated, and conventional). In arable cropping systems, herbicide tolerance had the most significant impact on agronomic practices in integrated and conventional farming systems. HT crops enable altered soil and weed management strategies. While no-till soil management benefited soil conservation, the highly efficient weed control reduced biodiversity. These effects accumulated over time due to the high proportion of HT crops in the integrated and conventional model rotations. In organic production systems, the effects were less pronounced, mainly due to non-use of herbicides. Traits affecting resistance to pests and diseases had a minor impact on the overall performance of the systems, mainly due to the availability of alternative crop protection tools or traditionally bred varieties. The use of GM crops had only a minor effect on the overall profitability of the arable crop rotations. In apple production systems, scab and fire blight resistance had a positive impact on natural resources as well as on local ecology due to the reduced need for spray passages and pesticide use. In integrated apple production, disease resistance increased profitability slightly, whereas in the organic scenario, both scab and fire blight resistance increased the profitability of the systems substantially. In conclusion, the ecological and socio-economic impacts identified in this study were highly context sensitive and were associated mainly with altered production systems rather than with the GM crops per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACRE (2007) Managing the footprint of agriculture: towards a comparative assessment of risks and benefits for novel agricultural systems. Report of the ACRE sub-group on wider issues raised by the Farm-Scale Evaluations of herbicide tolerant GM crops

  • AGPM (2007) Guide de bonnes pratiques pour la culture du maïs bt AGPM. Association Générale des Producteurs de Maïs, Paris

    Google Scholar 

  • Alvarez-Alfageme F, Bigler F, Romeis J (2011) Laboratory toxicity studies demonstrate no adverse effects of cry1Ab and cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design. Transgenic Res 20:467–479. doi:10.1007/s11248-010-9430-5

    Article  PubMed  CAS  Google Scholar 

  • Anken T, Irla E, Heusser J, Ammann H, Richner W, Walther U, Weisskopf P, Nievergelt J, Stamp P, Schmid O, Mäder P (2003) Einfluss der Bodenbearbeitung auf die Nitratauswaschung. FAT-Berichte Nr. 598. FAT, Tänikon

  • Anken T, Stamp P, Richner W, Walther U (2004) Pflanzenentwicklung, Stickstoffdynamik und Nitratauswaschung gepflügter und direktgesäter Parzellen. FAT-Schriftenreihe Nr. 63. Agroscope FAT, Tänikon

  • ARE (2004) Nachhaltigkeitsbeurteilung: Rahmenkonzept und methodische Grundlagen. Bundesamt für Raumentwicklung (ARE), Bern

    Google Scholar 

  • Bartsch D, Schmidt M (1997) Influence of sugar beet breeding on populations of Beta vulgaris ssp. maritima in Italy. J Veg Sci 8:81–84. doi:10.2307/3237245

    Article  Google Scholar 

  • Bartsch D, Dietz-Pfeilstetter A, Koenig R, Schuphan I, Smalla K, Wackernagel W (1999) Wissenschaftliche Begleitung von Freilandversuchen mit Rhizomania-resistenten Zuckerrüben. BMBF-Statusseminar. Bundesministerium für Bildung und Forschung BMBF, http://www.biosicherheit.de/pdf/proceedings99/15Bartsch.pdf, pp. 65–76

  • Beckie HJ, Séguin-Swartz G, Warwick SI, Johnson E (2004) Multiple herbicide-resistant canola can be controlled by alternative herbicides. Weed Sci 52:152–157. doi:10.1614/P2002-163

    Article  CAS  Google Scholar 

  • Benbrook CM (2004) Genetically engineered crops and pesticide use in the United States: the first nine years. BioTech InfoNet Technical Paper Number 7

  • Bigler F, Fischer D, Sanvido O, Stark M, Vogel B, Wiesendanger B (2008) Grundlagen für ein Umweltmonitoring unbewilligter gentechnisch veränderter Pflanzen im Kanton Zürich. ART-Schriftenreihe 8. Forschungsanstalt Agroscope Reckenholz-Tänikon ART, Ettenhausen

    Google Scholar 

  • Bindraban PS, Franke AC, Ferrar DO, Ghersa CM, Lotz LAP, Nepomuceno A, Smulders MJM, van den Wiel CCM (2009) GM-related sustainability: agro-ecological impacts, risks and opportunities of soy production in Argentina and Brazil. Plant Research International B.V., Report 259, Wageningen

  • Binimelis R, Pengue W, Monterosso I (2009) “Transgenic treadmill”: responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina. Geoforum 40:623–633. doi:10.1016/j.geoforum.2009.03.009

    Article  Google Scholar 

  • BLW (2005) Agrarbericht 2005 des Bundesamtes für Landwirtschaft. Bundesamt für Landwirtschaft (BLW), Bern

    Google Scholar 

  • Bøhn T, Prinicerio R, Hessen DO, Traavik T (2008) Reduced fitness of Daphnia magna fed a Bt-transgenic maize variety. Arch Environ Contam Toxicol 55:584–592. doi:10.1007/s00244-008-9150-5

    Article  PubMed  CAS  Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456

    Article  PubMed  CAS  Google Scholar 

  • Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N, Guery B, Chevreuil M, Blanchoud H (2009) Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 77:133–139. doi:10.1016/j.chemosphere.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  • Bravin E, Eicher O, Goldenberger M, Henauer U, Hollenstein R, Kilchenmann A, Maurer J, Mouron P, Rossier J, Zürcher M (2009) Die Bewertung der Obstkultur. Flugschrift Nr. 61. Agroscope Changins-Wädenswil ACW

  • Bravin E, Mencarelli Hoffmann D, Kockerols M, Weibel FP (2010) Economics evaluation of apple production systems. Proceedings of the Organic Fruit Conference. Acta Horticult 873:219–225

    Google Scholar 

  • Brookes G, Barfoot P (2005) GM crops: the global economic and environmental impact—the first nine years 1996–2004. AgBioforum 8:187–196

    Google Scholar 

  • Brooks DR et al (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I Soil-surface-active invertebrates. Philos Trans R Soc Lond B 358(1439):1847–1862

    Article  CAS  Google Scholar 

  • Bruinsma M, Kowalchuk GA, Van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337

    Google Scholar 

  • Büchs W, Prescher S, Schlein O (2009) Does Diabrotica-resistant Bt maize promote pests like fruit flies and aphids? Indications from biosafety research on effects of cry3Bb1-Bt–maize on Diptera insect pathogens and insect parasitic nematodes. IOBC/wprs Bulletin vol. 45. IOBC, pp. 170

  • Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315:381–384. doi:10.1126/science.1136607

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Yaziki A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur J Agron 31:114–119. doi:10.1016/j.eja.2009.07.001

    Article  CAS  Google Scholar 

  • Carpenter J, Gianessi L (1999) Herbicide tolerant soybeans: why growers are adopting Roundup Ready varieties. AgBioforum 2:65–72

    Google Scholar 

  • Ceddia MG, Bartlett M, Perrings C (2007) Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol Model 205:169–180. doi:10.1016/j.ecolmodel.2007.02.025

    Article  Google Scholar 

  • Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kàrenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125. doi:10.1016/j.fct.2004.02.003

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain DE, Freeman SN, Vickery JA (2007) The effects of GMHT crops on bird abundance in arable fields in the UK. Agric Ecosyst Environ 118:350–356. doi:10.1016/j.agee.2006.05.012

    Article  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443. doi:10.1111/j.1469-8137.2006.01710.x

    Article  PubMed  CAS  Google Scholar 

  • Colbach N (2009) How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape lavel: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops. Environ Sci Pollut Res 16:348–360

    Article  CAS  Google Scholar 

  • Copeland JE, Daems W, Demont M, Dillen K, Gylling M, Kasamba E, Mathijs E, Menrad K, Oehen B, Petzoldt M, Sausse C, Stolze M, Tollens E (2007) Costs of measures to ensure co-existence and economic implications of adventitious admixtures in different systems. Sustainable Introduction of GMOs into European Agriculture (SIGMEA) Deliverable D5.2 & D5.3. University of Applied Sciences Weihenstephan, Germany

    Google Scholar 

  • Daems W., M. Demont, K. Dillen, E. Mathijs, SausseC., E. Tollens. (2007) Economics of spatial coexistence of transgenic and conventional crops: oilseed rape in Central France. Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, NL

  • Delabays N, Auer J (2009) Eine neue exotische Pflanze etabliert sich in den Weinbaugebieten: Das südamerikanische Berufskraut. Agroscope News-Service http://www.news-service.admin.ch/NSBSubscriber/message/de/28887. Accessed 17 Mar 2010

  • Derron JO, Goy G, Breitenmoser S (2009) Caractérisation biologique de la race de la pyrale du maïs (Ostrinia nubilalis) à deux générations présente dans le Bassin lémanique. Rev Suisse Agric 41:179–184

    Google Scholar 

  • Dewar AM, May MJ, Woiwod IP, Haylock LA, Champion GT, Garner BH, Sands RJN, Qi A, Pidgeon JD (2003) A novel approach to the use of genetically modified herbicide tolerant crops for environmental benefit. Proc R Soc Lond B 270:335–340

    Article  CAS  Google Scholar 

  • Duan JJ, Lundgren JG, Naranjo S, Marvier M (2010) Extrapolating non-target risk of Bt crops from laboratory to field. Biol Lett 6:74–77

    Article  PubMed  Google Scholar 

  • Duke SO, AL Cerdeira, (2005) Potential environmental impacts of herbicide-resistant crops. Collection of biosafety reviews. Vol 2. International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy, pp. 66–143

  • Duke SO, AL Cerdeira (2005) Transgenic herbicide-resistant crops: current status and potential for the future. Outlooks on Pest Management, August 2005, 1–4

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447. doi:10.1046/j.1365-2311.2002.00436.x

    Article  Google Scholar 

  • Econopouly BF, McKay JK, Westra P, Lapitan NL, Chapman L, Byrne PF (2011) Backcrossing provides an avenue for gene introgression from wheat to jointed goatgrass (Aegylops cylindrica) in the U.S. Great Plains. Weed Sci 59:188–194. doi:10.1614/WS-D-10-00141.1

    Article  CAS  Google Scholar 

  • EFSA (2008) Conclusion on pesticide peer review regarding the risk assessment of the active substance copper (i), copper (ii) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper (i) oxide, Bordeaux mixture. EFSA Sci Rep 187:1–101

    Google Scholar 

  • EUROSTAT (2009) Price indices of the means of agricultural production. EUROSTAT, Luxembourg. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apri_pi05_ina&lang=en. Accessed on 16 July 2010

  • Feil B, Schmid JE (2001) Pollenflug bei Mais, Weizen und Roggen. Shaker, Aachen

    Google Scholar 

  • Felke M, Langenbruch GA (2005) Auswirkungen des Pollens von Bt-Mais auf ausgewählte Schmetterlingslarven. BfN-Skripten 157. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Fliessbach A, Messmer M, Nietlisbach B, Infante V, Mäder P (2012) Effects of conventionally bred and Bacillus thuringiensis (Bt) maize varieties on soil microbial biomass and activity. Biol Fertil Soils. doi:10.1007/s00374-011-0625-6

  • Flisch R, Sinaj S, Charles R, Richner W (2009) GRUDAF 2009. Grundlagen für die Düngung im Acker- und Futterbau. Agrarforschung 16:4–97

    Google Scholar 

  • Foresight Expert Group (2007) FFRAF report: foresighting food, rural and agri-futures. Standing Committee on Agricultural Research. http://ec.europa.eu/research/agriculture/scar/pdf/foresighting_food_rural_and_agri_futures.pdf

  • Gaines TA, Henry B, Byrne PF, Westra P, Nissen J, Shanes DL (2008) Jointed Goatgrass (Aegylops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions. Weed Sci 56:32–36. doi:10.1614/WS-07-033.1

    Article  CAS  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gianessi LP (2008) Economic impacts of glyphosate-resistant crops. Pest Manag Sci 64:346–352. doi:10.1002/ps.1490

    Article  PubMed  CAS  Google Scholar 

  • Gianessi LP, Silvers CS, Sankula S, Carpenter JE (2002) Plant biotechnology: current and potential impact for improving pest management in U.S. agriculture. An analysis of 40 case studies. National Center for Food and Agricultural Policy, Washington, DC

    Google Scholar 

  • Gibbons DW, Bohan DA, Rothery P, Stuart RC, Haughton AJ, Scott RJ, Wilson JD, Perry JN, Clark SJ, Dawson JG, Firbank LG (2006) Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proc R Soc B 273:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Barbero M, Rodriguez-Cerezo E (2006) Economic impact of dominant GM crops worldwide: a review. European Commission, DG JRC, December 2006

  • Gómez-Barbero M, Rodruigez-Cerezo E (2007) GM crops in EU agriculture. A case study for the BIO4EU project. European Commission, DG JRC. Institute for Prospective Technology Studies. http://bio4eu.jrc.ec.europa.eu/documents/FINALGMcropsintheEUBIO4EU.pdf, Sevilla

  • Gomides FL, Singer H, Müller SR, Schwarzenbach RP, Stamm C (2008) Source area effects on herbicide losses to surface waters—a case study in the Swiss alps. Agric Ecosyst Environ 128:177–184

    Article  CAS  Google Scholar 

  • Granado J, Thürig B, Kieffer E, Petrini L, Fliessbach A, Tamm L, Weibel FP, Wyss GS (2008) Culturable fungi of stored ‘golden delicious’ apple fruits: a one-season comparison study of organic and integrated production systems in Switzerland. Microb Ecol 56:720–732. doi:10.1007/s00248-008-9391-x

    Article  PubMed  Google Scholar 

  • Gruber S, Pekrun C, Claupein W (2004) Seed persistence of oilseed rape (Brassica napus): variation in transgenic and conventionally bred cultivars. J Agric Sci 142:29–40. doi:10.1017/S0021859604003892

    Article  Google Scholar 

  • Guadagnuolo R, Savova-Bianchi D, Felber F (2001) Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host.), as revealed by RAPD and microsatellite markers. Theor Appl Genet 103:1–8. doi:10.1007/s001220100636

    Article  CAS  Google Scholar 

  • Hanke I, Wittmer I, Bischofberger S, Stamm C, Singer H (2010) Relevance of urban glyphosate use for surface water quality. Chemosphere 81:422–429. doi:10.1016/j.chemosphere.2010.06.067

    Article  PubMed  CAS  Google Scholar 

  • Hanson BD, Mallory-Smith CA, Price WJ, Shafil B, Thill DC, Zemetra RS (2005) Interspecific hybridization: potential for movement of herbicide resistance from wheat to jointed goatgrass (Aegylops cylindrica). Weed Technol 19:647–682. doi:10.1614/WT-04-217R.1

    Article  Google Scholar 

  • Harwood JD, Wallin WG, Obrycki JJ (2005) Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Mol Ecol 14:2815–2823. doi:10.1111/j.1365-294X.2005.02611.x

    Article  PubMed  CAS  Google Scholar 

  • Harwood JD, Samson RA, Obrycki JJ (2007) Temporal detection of cry1Ab-endotoxins in coccinellid predators from fields of Bacillus thuringiensis corn. Bull Entomol Res 97:643–648. doi:10.1017/S000748530700524X

    Article  PubMed  CAS  Google Scholar 

  • Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rotherry P, Roy DB, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Browne EL, Dewar AJG, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJN, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II Within-field epigeal and aerial arthropods. Philos Trans R Soc Lond B 358:1863–1877

    Article  CAS  Google Scholar 

  • Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuca Y, Parker J, Tsui M (2006a) Pesticide mixtures, endocrine disruptors, and amphibian declines: are we underestimating the impact? Environ Heal Perspect 114:40–50

    Article  Google Scholar 

  • Hayes TB, Stuart A, Mendoza M, Collins A, Noriega N, Vonk A, Johnston G, Liu R, Kpodzo D (2006b) Characterization of atrazine-induced gonadal malformations in african clawfrogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17ß-estradiol): support for the demasculinization/feminization hypothesis. Environ Heal Perspect 114:134–141

    Article  Google Scholar 

  • Heard MS, Hawes C, Champion GT, Clark SJ, Firbank LG, Haughton AJ, Parish AM, Perry JN, Rothery P, Scott RJ, Skellern MP, Squire GR, Hill MO (2003) Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects on abundance and diversity. Philos Trans R Soc Lond B 358:1819–1832

    Article  CAS  Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998a) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487

    Google Scholar 

  • Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1998b) Toxicity of Bacillus thuringiensis cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:1255–1263

    CAS  Google Scholar 

  • Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1999) Prey-mediated effects of cry1Ab toxin and protoxin and cry2A protoxin on the predator Chrysoperla carnea. Entomol Exp Appl 91:305–316

    Article  CAS  Google Scholar 

  • Hofmann F, Epp R, Kalchschmid A, Kruse L, Kuhn U, Maisch B, Müller E, Ober S, Radtke J, Schlechtriemen U, Schmidt G, Schröder W, von der Ohe W, Vögel R, Wedl N, Wosniok W (2008) GVO-Pollenmonitoring zum Bt-Maisanbau im Bereich des NSG/FFH-Schutzgebietes Ruhlsdorfer Bruch. Umweltwiss Schadstoff Forsch 20:275–289

    Article  Google Scholar 

  • Höhn H, Naef A, Holliger E, Widmer A, Gölles M, Linder C, Dubuis PH, Kehrli P, Wirth J (2010) Empfohlene Pflanzenschutzmittel für den Erwerbsobstbau 2010. Flugschrift 122. Schweizerische Zeitschrift für Obst- und Weinbau Nr. 2, 2010: 1–19

  • Holliger E (2009) Feuerbrand in der Schweiz: Befallsentwicklung und Massnahmen in den letzten 10 Jahren. Nachr Dtsch Pflanzenschutzd 60:239

    Google Scholar 

  • Hommel B, Strassemayer J, Pallutt B (2006) Bewertung von herbizidresistenten Kulturpflanzen in Bezug auf das Reduktionsprogramm chemischer Pflanzenschutz—Auswertung eines 8-jährigen Dauerversuchs mit glufosinatresistentem Raps und Mais. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft XX, 13–20

  • Howe CM, Berrill M, Pauli BD, Helbing CC, Werry K, Veldhoen N (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23:1928–1938. doi:10.1897/03-71

    Article  PubMed  CAS  Google Scholar 

  • Huber DM (2007) What about glyphosate-induced manganese deficiency? Fluid J Fall 2007:20–22

    Google Scholar 

  • Hüsken A, Ammann K, Messeguer J, Papa R, Robson P, Schiemann J, Squire GR, Stamp P, Sweet J, Wilhelm R (2007) A major European synthesis of data on pollen and seed mediated gene flow in maize in the SIGMEA project, unpublished. http://www.botanischergarten.ch/Geneflow/Huesken-Synthesis-2007.pdf

  • Hütter E, Bigler F, Fried PM (2000) Transgene schädlingsresistente Pflanzen in der Schweiz? Agrarforschung 7:148–153

    Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586. doi:10.1016/j.soilbio.2007.11.002

    Article  CAS  Google Scholar 

  • Icoz I, Saxena D, Andow DA, Zwahlen C, Stotzky G (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing cry proteins from Bacillus thuringiensis. J Environ Qual 37:647–662

    Article  PubMed  CAS  Google Scholar 

  • James C (2010) Global status of commercialized biotech/GM crops: 2010. ISAAA brief no. 42. ISAAA, Ithaca

    Google Scholar 

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152. doi:10.1016/j.eja.2009.04.004

    Article  CAS  Google Scholar 

  • Johnson WG, Davis VM, Kruger GR, Weller SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31:162–172. doi:10.1016/j.eja.2009.03.008

    Article  CAS  Google Scholar 

  • Jones JDG (2011) Why genetically modified crops? Phil Trans R Soc A 369:1807–1816. doi:10.1098/rsta.2010.0345

    Article  PubMed  Google Scholar 

  • Kasamba E, Copeland J (2007) Economics of co-existence measures of GM and conventional crops: oilseed rape in Fife (Scotland). Working paper SIGMEA project

  • Kleter GA, Harris C, Stephenson G, Unsworth J (2008) Comparison of herbicide regimes and the associated potential environmental effects of glyphosate-resistant crops versus what they replace in Europe. Pest Manag Sci 64:479–488. doi:10.1002/ps.1513

    Article  PubMed  CAS  Google Scholar 

  • Kravchenko AN, Hao X, Robertson GP (2009) Seven years of continuously planted Bt corn did not affect mineralizable and total soil C and total N in surface soil. Plant Soil 318:269–274. doi:10.1007/s11104-008-9836-5

    Article  CAS  Google Scholar 

  • KTBL (2008) Betriebsplanung Landwirtschaft 2008/09. Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt

    Google Scholar 

  • Landwirtschaftliches Zentrum SG (2006) Neupflanzung von Hochstammobstbäumen im Rahmen von Vernetzungsprojekten und Pflanzaktionen

  • Lang A, Otto M (2010) A synthesis of laboratory and field studies on the effects of transgenic Bacillus thuringiensis (Bt) maize on non-target Lepidoptera. Entomol Exp Appl 135:121–134

    Article  Google Scholar 

  • Lang A, Vojtech E (2006) The effects of pollen consumption of transgenic Bt maize on the common swallowtail, Papilio machaon L. (Lepidoptera, Papilionidae). Basic and Appl Ecol 7:296–306. doi:10.1016/j.baae.2005.10.003

    Article  Google Scholar 

  • LaReesa Wolfenbarger L, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3:e2118

    Article  PubMed  CAS  Google Scholar 

  • Ledermann T, Schneider F (2008) Verbreitung der Direktsaat in der Schweiz. Agrarforschung 15:408–413

    Google Scholar 

  • Leu C, Singer H, Stamm C, Müller SR, Schwarzenbach RP (2004) Simultaneous assessment of sources, processes, and factors influencing herbicide losses due to surface waters in a small agricultural catchment. Environ Sci Technol 38:3827–3834. doi:10.1021/es0499602

    Article  PubMed  CAS  Google Scholar 

  • Leu C, Singer H, Müller SR, Schwarzenbach RP, Stamm C (2005) Comparison of atrazine losses in three small headwater catchments. J Environ Qual 34:1873–1882. doi:10.2134/jeq2005.0049

    Article  PubMed  CAS  Google Scholar 

  • Liphadzi KB, Al-Khatib K, Bensch CN, Stahlmann PW, Dille J, Todd T, Rice CW, Horak MJ, Head G (2005) Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system. Weed Sci 53:536–545. doi:10.1614/WS-04-129R1

    Article  CAS  Google Scholar 

  • Lutman PJW (2003) Co-existence of conventional, organic and GM crops—role of temporal and spatial behaviour of seeds. In: Boelt B (ed) Proceedings of the 1st European conference on the co-existence of genetically modified crops with conventional and organic crops. Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg, Slagelse, pp 33–42

    Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi:10.1126/science.1071148

    Article  PubMed  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Jossi W, Widmer F, Oberson A, Frossard E, Oehl F, Wiemken A, Gattinger A, Niggli U (2006) The DOK experiment (Switzerland). In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series No. 1. Dr. Köster, Berlin, pp 41–58

    Google Scholar 

  • Mann S (2011) Koexistenz möglich, Nutzen noch fraglich. Newsletter NFP59 6:1–4

    Google Scholar 

  • Mann RM, Hyne RV, Choung CB, Wilson SB (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927. doi:10.1016/j.envpol.2009.05.015

    Article  PubMed  CAS  Google Scholar 

  • Marvier M, Van Acker RC (2005) Can crop transgenes be kept on a leash? Front Ecol Environ 3:99–106. doi:10.1890/1540-9295(2005)003[0093:CCTBKO]2.0.CO;2

    Article  Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1476. doi:10.1126/science.1139208

    Article  PubMed  CAS  Google Scholar 

  • Menrad K, Gabriel A, Gylling M, Larsen A, Voltolina P, Stolze M, Morgner M, Oehen B, Maciejczak M, Gryson N, Eeckhout M (2009) Costs and benefits of co-existence and traceability between GM and non-GM supply chains. CoExtra Synthesis report WP3, Weihenstephan

  • Menzel G, Lünsmann I, Middelhoff U, Breckling B, Schmidt G, Tillmann J, Windhurst W, Schröder W, Filser J, Reuter H (2005) Gentechnisch veränderte Pflanzen und Schutzgebiete—Wirksamkeit von Abstandsregelungen. Bundesamt für Naturschutz, Bad Godesberg

    Google Scholar 

  • Meyer A, Hanser E, Dierauer HU (2008) Deckungsbeiträge. Ausgabe 2008. AGRIDEA, Lindau

    Google Scholar 

  • Mijangos I, Becerril JM, Albizu I, Epelde L, Garbisu C (2009) Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and -independent methodologies. Soil Biol Biochem 41:505–513. doi:10.1016/j.soilbio.2008.12.009

    Article  CAS  Google Scholar 

  • Møller HE, Djurhuus J (1997) Nitrate leaching as influenced by soil tillage and catch crop. Soil Tillage Res 41:203–219

    Article  Google Scholar 

  • Nowicki P, Weeger C, van Meijl H, Banse M, Helming J, Terluin I, Verhoog D, Overmars K, Westhoek H, Knierim A, Reutter M, Matzdorf B, Meargraf O, Mnatsakanian R (2007) Scenar 2020—Scenario study on agriculture and the rural world. European Commission, DG Agriculture and Rural Development. http://ec.europa.eu/agriculture/agrista/2006/scenar2020/final_report/scenar2020final.pdf

  • Obrist LB, Dutton A, Albajes R, Bigler F (2006) Exposure of arthropod predators to cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–154. doi:10.1111/j.0307-6946.2006.00762.x

    Article  Google Scholar 

  • Park JR, McFarlane I, Hartley Phillips R, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21

    Article  Google Scholar 

  • Paustian K (2005) Soils, global change and global sustainability. 15th meeting of the Italian Society of Ecology, Torino 2005

  • Peterson G, Cunningham S, Deutsch L, Erickson J, Quinlan A, Raez-Luna E, Tinch R, Troell M, Woodbury P, Zens S (2000) The risks and benefits of genetically modified crops: a multidisciplinary perspective. Conserv Ecol 4:13

    Google Scholar 

  • Peterson JA, Obrycki JJ, Harwood JD (2009) Quantification of Bt-endotoxin exposure pathways in carabid food webs across multiple transgenic events. Biocontrol Sci Tech 19:613–625. doi:10.1080/09583150902968972

    Article  Google Scholar 

  • Powles SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365. doi:10.1002/ps.1525

    Article  PubMed  CAS  Google Scholar 

  • Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. doi:10.1016/j.scitotenv.2007.04.046

    Article  PubMed  CAS  Google Scholar 

  • Reim S (2008) Beiträge zur Bewertung der Umweltverträglichkeit gentechnisch veränderter Apfelgehölze. Dissertation. Julius-Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Quedlinburg

  • Reim S (2009) Erhaltung von Malus sylvestris unter in situ-Bedingungen im Osterzgebirge. Nachwuchswissenschaftlerforum 2009. Julius-Kühn-Archiv 424:38–40

    Google Scholar 

  • Reitmeier D, Menrad K, Demont M, Diems W, Turley D (2006) Methods for calculation of co-existence costs in agriculture. Task Guidelines of WP 5 within Project SIGMEA. http://www.wz-straubing.de/fachhochschule-weihenstephan/download/wp%205_guidelines_5.pdf

  • Relyea RA (2005) The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124. doi:10.1890/04-1291

    Article  Google Scholar 

  • Relyea RA, Schoeppner NM, Hoverman JT (2005) Pesticides and amphibians: the importance of community context. Ecol Appl 15:1125–1134. doi:10.1890/04-0559

    Article  Google Scholar 

  • Rodrigo-Simon A, de Maagd RA, Avilla C, Bakker PL, Molthoff J, Gonzalez-Zamora JE, Ferré J (2006) Lack of detrimental effect of Bacillus thuringiensis cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological and biochemical analysis. Appl Environ Microbiol 72:1595–1603. doi:10.1128/AEM.72.2.1595-1603.2006

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Dutton A, Bigler F (2004) Bacillus thuringiensis toxin (cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Insect Physiol 50:175–183. doi:10.1016/j.jinsphys.2003.11.004

    Article  PubMed  CAS  Google Scholar 

  • Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, Griffiths NA, Pokelsek J, Stephan ML (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. PNAS 104:16204–16208. doi:0.1073/pnas.0707177104

    Article  PubMed  CAS  Google Scholar 

  • Roy DB, Bohan DA, Haughton AJ, Hill MO, Osborne JL, Clark SJ, Perry JN, Rotherry P, Scott RJ, Brooks DR, Champion GT, Hawes C, Heard MS, Firbank LG (2003) Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B 358:1879–1898

    Article  CAS  Google Scholar 

  • Russell W (2008) GMOs and their contexts: a comparison of potential and actual performance of GM crops in a local agricultural setting. Geoforum 39:213–222

    Article  Google Scholar 

  • Sanvido O, Widmer F, Winzeler M, Streit B, Szerencsits E, Bigler F (2005) Koexistenz verschiedener landwirtschaftlicher Anbausystems mit und ohne Gentechnik. Schriftenreihe der FAL 55. Agroscope FAL Reckenholz, Zürich

    Google Scholar 

  • Sanvido O, Stark M, Romeis J, Bigler F (2006) Ecological impacts of genetically modified crops. Experiences from ten years of experimental field research and commercial cultivation. Agroscope ART, Zürich

    Google Scholar 

  • Schärer H-J (2000) Feuerbrand, ein Dauerbrenner. Agrarforschung 7:404–409

    Google Scholar 

  • Schaub L, Auer J (2008) 50 Jahre Prävention der Zystennematoden der Kartoffel. Press release of 2.12.2008. Agroscope ACW

  • Schmidt JEU, Braun CU, Whitehouse LP, Hilbeck A (2009) Effects of activated Bt transgene products (cry1Ab, cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity tests. Arch Environ Contam Toxicol 56:221–228. doi:10.1007/s00244-008-9191-9

    Article  PubMed  CAS  Google Scholar 

  • Schoch H (2009) Preiskatalog. Ausgabe 2009. AGRIDEA, Lindau

    Google Scholar 

  • SFZ (2011) Sortenangebot 2011. Leistungsprüfung 2008–2010. Schweizerische Fachstelle für Zuckerrübenanbau. www.zuckerruebe.ch

  • Singer HP, Anfang HG, Lück A, Peter A, Müller SR (2005) Pestizidbelastung der Oberflächengewässer. gwa––Gas Wasser Abwasser 11/2005, 879–886

  • Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedie JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404

    Article  Google Scholar 

  • Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van der Kraak GJ (2008) Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38:721–772. doi:10.1080/10408440802116496

    Article  PubMed  Google Scholar 

  • Soukup J, Holec J, Jursik M, Hamouzova K (2011) Environmental and agronomic monitoring of adverse effects due to cultivation of genetically modified herbicide tolerant crops. J Verbr Lebensm 6:S125–S130. doi:10.1007/s00003-011-0682-7

    Article  Google Scholar 

  • Steinbach HS, Alvarez R (2006) Changes in soil organic carbon contents and nitrous oxide emissions after introduction on no-till in Pampean agroecosystems. J Environ Qual 35:3–13. doi:10.2134/jeq2005.0050

    Article  PubMed  CAS  Google Scholar 

  • Stotzky G (2004) Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant Soil 266:77–89. doi:10.1007/s11104-005-5945-6

    Article  CAS  Google Scholar 

  • Strandberg B, Pedersen MB (2002) Biodiversity in glyphosate tolerant fodder beet fields - timing of herbicide application. NERI Technical Report No. 410. National Environmental Research Institute, Denmark. Available at: http://www2.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR410.pdf

  • Sweet J, Simpson E, Law J, Lutman P, Berry K, Payne R, Champion G, May M, Walker K, Wightman P, Lainsbury M (2004) Botanical and rotational implications of genetically modified herbicide tolerance in winter oilseed rape and sugar beet (BRIGHT Project). HGCA Project Report No. 353. Home Grown Cereals Authority, London. Available at: www.hgca.com

  • Swiss Federal Council (2002) Sustainable Development Strategy 2002

    Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Royer TV, Whiles MR, Griffits NA, Frauendorf TC, Treering DJ (2010) Occurrence of maize detritus and a transgenic insecticidal protein (cry1Ab) within the stream network of an agricultural landscape. Proc Natl Acad Sci. doi:10.1073/pnas.1006925107

  • Tappeser B, Eckelkamp C, Weber B (2000) Untersuchungen zu tatsächlich beobachteten nachteiligen Effekten von Freisetzungen gentechnisch veränderter Organismen. Monographien Band 129. Umweltbundesamt, Wien

    Google Scholar 

  • Trigo EJ, Cap EJ (2006) Ten years of genetically modified crops in argentine agriculture. ArgenBio. pp. 1–52

  • UNDSD. (1992) Agenda 21. Konferenz der Vereinten Nationen für Umwelt und Entwicklung, Rio de Janeiro

  • United Nations General Assembly. (1987) Our common future, from one earth to one world. Report of the World Commission on Environment and Development. A/42/427

  • Vogler U, Rott AS, Gessler C, Dorn S (2010) How transgenic and classically bred apple genotypes affect non-target organisms on higher trophic levels. Entomol Exp Appl 134:114–121. doi:10.1111/j.1570-7458.2009.00942.x

    Article  Google Scholar 

  • Watkinson AR, Freckleton RP, Robinson RA, Sutherland WJ (2000) Predictions of biodiversity response to genetically modified herbicide-tolerant crops. Science 289:1554–1557. doi:10.1126/science.289.5484.1554

    Article  PubMed  CAS  Google Scholar 

  • Weaver MA, Krutz LJ, Zablotowicz RM, Reddy KN (2007) Effects of glyphosate on soil microbial communities and its mineralisation in a Mississippi soil. Pest Manag Sci 63:388–393

    Article  PubMed  CAS  Google Scholar 

  • Weibel FP, Leder A (2007) Experiences with the Swiss (organic) method how to introduce new apple varieties into retail market: Flavour Group Concept and Variety Team. Compact Fruit Tree 40:1–5

    Google Scholar 

  • Wolf D (2009) Erfahrungen zum ökonomischen Nutzen herbizidtoleranter Kulturen. Agrarforschung 16:52–57

    Google Scholar 

  • Wolf D, Albisser Vögeli G (2009) Ökonomischer Nutzen von Bt-Mais ist relativ. Agrarforschung 16:4–9

    Google Scholar 

  • Wyss E (1995) The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol Exp Appl 75:43–49. doi:10.1111/j.1570-7458.1995.tb01908.x

    Article  Google Scholar 

  • Yamada T, Kremer RJ, de Camargo e Castro PR, Wood BW (2009) Glyphosate interactions with physiology, nutrition, and diseases of plants: threat to agricultural sustainability? Eur J Agron 31:111–113. doi:10.1016/j.eja.2009.07.004

    Article  CAS  Google Scholar 

  • Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B (2010) Transgene x environment interactions in genetically modified wheat. PLoS One 5:e11405. doi:10.1371/journal.pone.0011405

    Article  PubMed  CAS  Google Scholar 

  • Zhao JH, Ho P, Azadi H (2011) Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ Monit Assess 173:985–994. doi:10.1007/s10661-010-1439-y

    Article  PubMed  Google Scholar 

  • Zwahlen C, Andow DA (2005) Field evidence for the exposure of ground beetles to cry1Ab from transgenic corn. Environ Biosaf Res 4:113–117. doi:10.1051/ebr:2005014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank Gregor Albisser Vögeli, Daniel Ammann, Broder Breckling, Fabio Cerutti, Dirk Dobbelaire, Othmar Eicher, Andreas Fliessbach, Klaus Gersbach, Markus Hardegger, Thomas Imhof, Andreas Keiser, Carlo Leifert, Jan Lucht, Pia Malnöe, Stefan Mann, Urs Niggli, Karin Nowack, Lukas Pfiffner, Andrea Raps, Beatrix Tappeser, Wim Verbeke, Ueli Voegeli, Christian Vogt, and Claudia Zwahlen for their active participation in the project workshops. Christopher Hay critically reviewed the manuscript. This project was funded by the Swiss National Science Foundation in the framework of NRP59 (grant no 405940-115674 to L. Tamm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucius Tamm.

About this article

Cite this article

Speiser, B., Stolze, M., Oehen, B. et al. Sustainability assessment of GM crops in a Swiss agricultural context. Agron. Sustain. Dev. 33, 21–61 (2013). https://doi.org/10.1007/s13593-012-0088-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0088-7

Keywords

Navigation