Agronomy for Sustainable Development

, Volume 33, Issue 1, pp 21–61 | Cite as

Sustainability assessment of GM crops in a Swiss agricultural context

  • Bernhard Speiser
  • Matthias Stolze
  • Bernadette Oehen
  • Cesare Gessler
  • Franco P. Weibel
  • Esther Bravin
  • Adeline Kilchenmann
  • Albert Widmer
  • Raffael Charles
  • Andreas Lang
  • Christian Stamm
  • Peter Triloff
  • Lucius TammEmail author
Review Article


The aim of this study was to provide an ex ante assessment of the sustainability of genetically modified (GM) crops under the agricultural conditions prevailing in Switzerland. The study addressed the gaps in our knowledge relating to (1) the agronomic risks/benefits in production systems under Swiss conditions (at field and rotation/orchard level), (2) the economic and socio-economic impacts associated with altered farming systems, and (3) the agro-ecological risks/benefits of GM crops (at field and rotation/orchard level). The study was based on an inventory of GM crops and traits which may be available in the next decade, and on realistic scenarios of novel agricultural practices associated with the use of GM crops in conventional, integrated, and organic farming systems in Switzerland. The technology impact assessment was conducted using an adapted version of the matrix for “comparative assessment of risks and benefits for novel agricultural systems” developed for the UK. Parameter settings were based on information from literature sources and expert workshops. In a tiered approach, sustainability criteria were defined, an inventory of potentially available, suitable GM crops was drawn up, and scenarios of baseline and novel farming systems with GM crops were developed and subsequently submitted to economic, socio-economic, and agro-ecological assessments. The project had several system boundaries, which influenced the outcomes. It was limited to the main agricultural crops used for food and feed production and focused on traits that are relevant at the field level and are likely to be commercially available within a decade from the start of the project. The study assumed that there would be no statutory restrictions on growing GM crops in all farming systems and that they would be eligible for direct payments in the same way as non-GM crops. Costs for co-existence measures were explicitly excluded and it was assumed that GM foods could be marketed in the same way as non-GM foods at equal farm gate prices. The following model GM crops were selected for this study: (1) GM maize varieties with herbicide tolerance (HT), and with resistance to the European corn borer (Ostrinia nubilalis) and the corn rootworm (Diabrotica virgifera); (2) HT wheat; (3) GM potato varieties with resistance to late blight (Phytophthora infestans), to the nematode Globodera spp., and to the Colorado beetle (Leptinotarsa decemlineata); (4) HT sugar beet with resistance to “rhizomania” (beet necrotic yellow vein virus; BNYVV); (5) apples with traditionally bred or GM resistance to scab (Venturia inaequalis), and GM apples with stacked resistance to scab and fire blight (Erwinia amylovora). Scenarios for arable rotations and apple orchards were developed on the basis of the model crops selected. The impact assessments were conducted for the entire model rotations/orchards in order to explore cumulative effects as well as effects that depend on the farming systems (organic, integrated, and conventional). In arable cropping systems, herbicide tolerance had the most significant impact on agronomic practices in integrated and conventional farming systems. HT crops enable altered soil and weed management strategies. While no-till soil management benefited soil conservation, the highly efficient weed control reduced biodiversity. These effects accumulated over time due to the high proportion of HT crops in the integrated and conventional model rotations. In organic production systems, the effects were less pronounced, mainly due to non-use of herbicides. Traits affecting resistance to pests and diseases had a minor impact on the overall performance of the systems, mainly due to the availability of alternative crop protection tools or traditionally bred varieties. The use of GM crops had only a minor effect on the overall profitability of the arable crop rotations. In apple production systems, scab and fire blight resistance had a positive impact on natural resources as well as on local ecology due to the reduced need for spray passages and pesticide use. In integrated apple production, disease resistance increased profitability slightly, whereas in the organic scenario, both scab and fire blight resistance increased the profitability of the systems substantially. In conclusion, the ecological and socio-economic impacts identified in this study were highly context sensitive and were associated mainly with altered production systems rather than with the GM crops per se.


Crop management Ecological impact assessment GM crops Profitability Sustainability Swiss agriculture Transgenic crops 



We warmly thank Gregor Albisser Vögeli, Daniel Ammann, Broder Breckling, Fabio Cerutti, Dirk Dobbelaire, Othmar Eicher, Andreas Fliessbach, Klaus Gersbach, Markus Hardegger, Thomas Imhof, Andreas Keiser, Carlo Leifert, Jan Lucht, Pia Malnöe, Stefan Mann, Urs Niggli, Karin Nowack, Lukas Pfiffner, Andrea Raps, Beatrix Tappeser, Wim Verbeke, Ueli Voegeli, Christian Vogt, and Claudia Zwahlen for their active participation in the project workshops. Christopher Hay critically reviewed the manuscript. This project was funded by the Swiss National Science Foundation in the framework of NRP59 (grant no 405940-115674 to L. Tamm).


  1. ACRE (2007) Managing the footprint of agriculture: towards a comparative assessment of risks and benefits for novel agricultural systems. Report of the ACRE sub-group on wider issues raised by the Farm-Scale Evaluations of herbicide tolerant GM cropsGoogle Scholar
  2. AGPM (2007) Guide de bonnes pratiques pour la culture du maïs bt AGPM. Association Générale des Producteurs de Maïs, ParisGoogle Scholar
  3. Alvarez-Alfageme F, Bigler F, Romeis J (2011) Laboratory toxicity studies demonstrate no adverse effects of cry1Ab and cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design. Transgenic Res 20:467–479. doi: 10.1007/s11248-010-9430-5 PubMedCrossRefGoogle Scholar
  4. Anken T, Irla E, Heusser J, Ammann H, Richner W, Walther U, Weisskopf P, Nievergelt J, Stamp P, Schmid O, Mäder P (2003) Einfluss der Bodenbearbeitung auf die Nitratauswaschung. FAT-Berichte Nr. 598. FAT, TänikonGoogle Scholar
  5. Anken T, Stamp P, Richner W, Walther U (2004) Pflanzenentwicklung, Stickstoffdynamik und Nitratauswaschung gepflügter und direktgesäter Parzellen. FAT-Schriftenreihe Nr. 63. Agroscope FAT, TänikonGoogle Scholar
  6. ARE (2004) Nachhaltigkeitsbeurteilung: Rahmenkonzept und methodische Grundlagen. Bundesamt für Raumentwicklung (ARE), BernGoogle Scholar
  7. Bartsch D, Schmidt M (1997) Influence of sugar beet breeding on populations of Beta vulgaris ssp. maritima in Italy. J Veg Sci 8:81–84. doi: 10.2307/3237245 CrossRefGoogle Scholar
  8. Bartsch D, Dietz-Pfeilstetter A, Koenig R, Schuphan I, Smalla K, Wackernagel W (1999) Wissenschaftliche Begleitung von Freilandversuchen mit Rhizomania-resistenten Zuckerrüben. BMBF-Statusseminar. Bundesministerium für Bildung und Forschung BMBF,, pp. 65–76
  9. Beckie HJ, Séguin-Swartz G, Warwick SI, Johnson E (2004) Multiple herbicide-resistant canola can be controlled by alternative herbicides. Weed Sci 52:152–157. doi: 10.1614/P2002-163 CrossRefGoogle Scholar
  10. Benbrook CM (2004) Genetically engineered crops and pesticide use in the United States: the first nine years. BioTech InfoNet Technical Paper Number 7Google Scholar
  11. Bigler F, Fischer D, Sanvido O, Stark M, Vogel B, Wiesendanger B (2008) Grundlagen für ein Umweltmonitoring unbewilligter gentechnisch veränderter Pflanzen im Kanton Zürich. ART-Schriftenreihe 8. Forschungsanstalt Agroscope Reckenholz-Tänikon ART, EttenhausenGoogle Scholar
  12. Bindraban PS, Franke AC, Ferrar DO, Ghersa CM, Lotz LAP, Nepomuceno A, Smulders MJM, van den Wiel CCM (2009) GM-related sustainability: agro-ecological impacts, risks and opportunities of soy production in Argentina and Brazil. Plant Research International B.V., Report 259, WageningenGoogle Scholar
  13. Binimelis R, Pengue W, Monterosso I (2009) “Transgenic treadmill”: responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina. Geoforum 40:623–633. doi: 10.1016/j.geoforum.2009.03.009 CrossRefGoogle Scholar
  14. BLW (2005) Agrarbericht 2005 des Bundesamtes für Landwirtschaft. Bundesamt für Landwirtschaft (BLW), BernGoogle Scholar
  15. Bøhn T, Prinicerio R, Hessen DO, Traavik T (2008) Reduced fitness of Daphnia magna fed a Bt-transgenic maize variety. Arch Environ Contam Toxicol 55:584–592. doi: 10.1007/s00244-008-9150-5 PubMedCrossRefGoogle Scholar
  16. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456PubMedCrossRefGoogle Scholar
  17. Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N, Guery B, Chevreuil M, Blanchoud H (2009) Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 77:133–139. doi: 10.1016/j.chemosphere.2009.05.008 PubMedCrossRefGoogle Scholar
  18. Bravin E, Eicher O, Goldenberger M, Henauer U, Hollenstein R, Kilchenmann A, Maurer J, Mouron P, Rossier J, Zürcher M (2009) Die Bewertung der Obstkultur. Flugschrift Nr. 61. Agroscope Changins-Wädenswil ACWGoogle Scholar
  19. Bravin E, Mencarelli Hoffmann D, Kockerols M, Weibel FP (2010) Economics evaluation of apple production systems. Proceedings of the Organic Fruit Conference. Acta Horticult 873:219–225Google Scholar
  20. Brookes G, Barfoot P (2005) GM crops: the global economic and environmental impact—the first nine years 1996–2004. AgBioforum 8:187–196Google Scholar
  21. Brooks DR et al (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I Soil-surface-active invertebrates. Philos Trans R Soc Lond B 358(1439):1847–1862CrossRefGoogle Scholar
  22. Bruinsma M, Kowalchuk GA, Van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337Google Scholar
  23. Büchs W, Prescher S, Schlein O (2009) Does Diabrotica-resistant Bt maize promote pests like fruit flies and aphids? Indications from biosafety research on effects of cry3Bb1-Bt–maize on Diptera insect pathogens and insect parasitic nematodes. IOBC/wprs Bulletin vol. 45. IOBC, pp. 170Google Scholar
  24. Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315:381–384. doi: 10.1126/science.1136607 PubMedCrossRefGoogle Scholar
  25. Cakmak I, Yaziki A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur J Agron 31:114–119. doi: 10.1016/j.eja.2009.07.001 CrossRefGoogle Scholar
  26. Carpenter J, Gianessi L (1999) Herbicide tolerant soybeans: why growers are adopting Roundup Ready varieties. AgBioforum 2:65–72Google Scholar
  27. Ceddia MG, Bartlett M, Perrings C (2007) Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol Model 205:169–180. doi: 10.1016/j.ecolmodel.2007.02.025 CrossRefGoogle Scholar
  28. Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kàrenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125. doi: 10.1016/j.fct.2004.02.003 PubMedCrossRefGoogle Scholar
  29. Chamberlain DE, Freeman SN, Vickery JA (2007) The effects of GMHT crops on bird abundance in arable fields in the UK. Agric Ecosyst Environ 118:350–356. doi: 10.1016/j.agee.2006.05.012 CrossRefGoogle Scholar
  30. Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443. doi: 10.1111/j.1469-8137.2006.01710.x PubMedCrossRefGoogle Scholar
  31. Colbach N (2009) How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape lavel: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops. Environ Sci Pollut Res 16:348–360CrossRefGoogle Scholar
  32. Copeland JE, Daems W, Demont M, Dillen K, Gylling M, Kasamba E, Mathijs E, Menrad K, Oehen B, Petzoldt M, Sausse C, Stolze M, Tollens E (2007) Costs of measures to ensure co-existence and economic implications of adventitious admixtures in different systems. Sustainable Introduction of GMOs into European Agriculture (SIGMEA) Deliverable D5.2 & D5.3. University of Applied Sciences Weihenstephan, GermanyGoogle Scholar
  33. Daems W., M. Demont, K. Dillen, E. Mathijs, SausseC., E. Tollens. (2007) Economics of spatial coexistence of transgenic and conventional crops: oilseed rape in Central France. Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, NLGoogle Scholar
  34. Delabays N, Auer J (2009) Eine neue exotische Pflanze etabliert sich in den Weinbaugebieten: Das südamerikanische Berufskraut. Agroscope News-Service Accessed 17 Mar 2010
  35. Derron JO, Goy G, Breitenmoser S (2009) Caractérisation biologique de la race de la pyrale du maïs (Ostrinia nubilalis) à deux générations présente dans le Bassin lémanique. Rev Suisse Agric 41:179–184Google Scholar
  36. Dewar AM, May MJ, Woiwod IP, Haylock LA, Champion GT, Garner BH, Sands RJN, Qi A, Pidgeon JD (2003) A novel approach to the use of genetically modified herbicide tolerant crops for environmental benefit. Proc R Soc Lond B 270:335–340CrossRefGoogle Scholar
  37. Duan JJ, Lundgren JG, Naranjo S, Marvier M (2010) Extrapolating non-target risk of Bt crops from laboratory to field. Biol Lett 6:74–77PubMedCrossRefGoogle Scholar
  38. Duke SO, AL Cerdeira, (2005) Potential environmental impacts of herbicide-resistant crops. Collection of biosafety reviews. Vol 2. International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy, pp. 66–143Google Scholar
  39. Duke SO, AL Cerdeira (2005) Transgenic herbicide-resistant crops: current status and potential for the future. Outlooks on Pest Management, August 2005, 1–4Google Scholar
  40. Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447. doi: 10.1046/j.1365-2311.2002.00436.x CrossRefGoogle Scholar
  41. Econopouly BF, McKay JK, Westra P, Lapitan NL, Chapman L, Byrne PF (2011) Backcrossing provides an avenue for gene introgression from wheat to jointed goatgrass (Aegylops cylindrica) in the U.S. Great Plains. Weed Sci 59:188–194. doi: 10.1614/WS-D-10-00141.1 CrossRefGoogle Scholar
  42. EFSA (2008) Conclusion on pesticide peer review regarding the risk assessment of the active substance copper (i), copper (ii) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper (i) oxide, Bordeaux mixture. EFSA Sci Rep 187:1–101Google Scholar
  43. EUROSTAT (2009) Price indices of the means of agricultural production. EUROSTAT, Luxembourg. Accessed on 16 July 2010
  44. Feil B, Schmid JE (2001) Pollenflug bei Mais, Weizen und Roggen. Shaker, AachenGoogle Scholar
  45. Felke M, Langenbruch GA (2005) Auswirkungen des Pollens von Bt-Mais auf ausgewählte Schmetterlingslarven. BfN-Skripten 157. Bundesamt für Naturschutz, BonnGoogle Scholar
  46. Fliessbach A, Messmer M, Nietlisbach B, Infante V, Mäder P (2012) Effects of conventionally bred and Bacillus thuringiensis (Bt) maize varieties on soil microbial biomass and activity. Biol Fertil Soils. doi: 10.1007/s00374-011-0625-6
  47. Flisch R, Sinaj S, Charles R, Richner W (2009) GRUDAF 2009. Grundlagen für die Düngung im Acker- und Futterbau. Agrarforschung 16:4–97Google Scholar
  48. Foresight Expert Group (2007) FFRAF report: foresighting food, rural and agri-futures. Standing Committee on Agricultural Research.
  49. Gaines TA, Henry B, Byrne PF, Westra P, Nissen J, Shanes DL (2008) Jointed Goatgrass (Aegylops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions. Weed Sci 56:32–36. doi: 10.1614/WS-07-033.1 CrossRefGoogle Scholar
  50. Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503CrossRefGoogle Scholar
  51. Gianessi LP (2008) Economic impacts of glyphosate-resistant crops. Pest Manag Sci 64:346–352. doi: 10.1002/ps.1490 PubMedCrossRefGoogle Scholar
  52. Gianessi LP, Silvers CS, Sankula S, Carpenter JE (2002) Plant biotechnology: current and potential impact for improving pest management in U.S. agriculture. An analysis of 40 case studies. National Center for Food and Agricultural Policy, Washington, DCGoogle Scholar
  53. Gibbons DW, Bohan DA, Rothery P, Stuart RC, Haughton AJ, Scott RJ, Wilson JD, Perry JN, Clark SJ, Dawson JG, Firbank LG (2006) Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proc R Soc B 273:1921–1928PubMedCrossRefGoogle Scholar
  54. Gómez-Barbero M, Rodriguez-Cerezo E (2006) Economic impact of dominant GM crops worldwide: a review. European Commission, DG JRC, December 2006Google Scholar
  55. Gómez-Barbero M, Rodruigez-Cerezo E (2007) GM crops in EU agriculture. A case study for the BIO4EU project. European Commission, DG JRC. Institute for Prospective Technology Studies., Sevilla
  56. Gomides FL, Singer H, Müller SR, Schwarzenbach RP, Stamm C (2008) Source area effects on herbicide losses to surface waters—a case study in the Swiss alps. Agric Ecosyst Environ 128:177–184CrossRefGoogle Scholar
  57. Granado J, Thürig B, Kieffer E, Petrini L, Fliessbach A, Tamm L, Weibel FP, Wyss GS (2008) Culturable fungi of stored ‘golden delicious’ apple fruits: a one-season comparison study of organic and integrated production systems in Switzerland. Microb Ecol 56:720–732. doi: 10.1007/s00248-008-9391-x PubMedCrossRefGoogle Scholar
  58. Gruber S, Pekrun C, Claupein W (2004) Seed persistence of oilseed rape (Brassica napus): variation in transgenic and conventionally bred cultivars. J Agric Sci 142:29–40. doi: 10.1017/S0021859604003892 CrossRefGoogle Scholar
  59. Guadagnuolo R, Savova-Bianchi D, Felber F (2001) Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host.), as revealed by RAPD and microsatellite markers. Theor Appl Genet 103:1–8. doi: 10.1007/s001220100636 CrossRefGoogle Scholar
  60. Hanke I, Wittmer I, Bischofberger S, Stamm C, Singer H (2010) Relevance of urban glyphosate use for surface water quality. Chemosphere 81:422–429. doi: 10.1016/j.chemosphere.2010.06.067 PubMedCrossRefGoogle Scholar
  61. Hanson BD, Mallory-Smith CA, Price WJ, Shafil B, Thill DC, Zemetra RS (2005) Interspecific hybridization: potential for movement of herbicide resistance from wheat to jointed goatgrass (Aegylops cylindrica). Weed Technol 19:647–682. doi: 10.1614/WT-04-217R.1 CrossRefGoogle Scholar
  62. Harwood JD, Wallin WG, Obrycki JJ (2005) Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Mol Ecol 14:2815–2823. doi: 10.1111/j.1365-294X.2005.02611.x PubMedCrossRefGoogle Scholar
  63. Harwood JD, Samson RA, Obrycki JJ (2007) Temporal detection of cry1Ab-endotoxins in coccinellid predators from fields of Bacillus thuringiensis corn. Bull Entomol Res 97:643–648. doi: 10.1017/S000748530700524X PubMedCrossRefGoogle Scholar
  64. Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rotherry P, Roy DB, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Browne EL, Dewar AJG, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJN, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II Within-field epigeal and aerial arthropods. Philos Trans R Soc Lond B 358:1863–1877CrossRefGoogle Scholar
  65. Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuca Y, Parker J, Tsui M (2006a) Pesticide mixtures, endocrine disruptors, and amphibian declines: are we underestimating the impact? Environ Heal Perspect 114:40–50CrossRefGoogle Scholar
  66. Hayes TB, Stuart A, Mendoza M, Collins A, Noriega N, Vonk A, Johnston G, Liu R, Kpodzo D (2006b) Characterization of atrazine-induced gonadal malformations in african clawfrogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17ß-estradiol): support for the demasculinization/feminization hypothesis. Environ Heal Perspect 114:134–141CrossRefGoogle Scholar
  67. Heard MS, Hawes C, Champion GT, Clark SJ, Firbank LG, Haughton AJ, Parish AM, Perry JN, Rothery P, Scott RJ, Skellern MP, Squire GR, Hill MO (2003) Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects on abundance and diversity. Philos Trans R Soc Lond B 358:1819–1832CrossRefGoogle Scholar
  68. Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998a) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487Google Scholar
  69. Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1998b) Toxicity of Bacillus thuringiensis cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:1255–1263Google Scholar
  70. Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1999) Prey-mediated effects of cry1Ab toxin and protoxin and cry2A protoxin on the predator Chrysoperla carnea. Entomol Exp Appl 91:305–316CrossRefGoogle Scholar
  71. Hofmann F, Epp R, Kalchschmid A, Kruse L, Kuhn U, Maisch B, Müller E, Ober S, Radtke J, Schlechtriemen U, Schmidt G, Schröder W, von der Ohe W, Vögel R, Wedl N, Wosniok W (2008) GVO-Pollenmonitoring zum Bt-Maisanbau im Bereich des NSG/FFH-Schutzgebietes Ruhlsdorfer Bruch. Umweltwiss Schadstoff Forsch 20:275–289CrossRefGoogle Scholar
  72. Höhn H, Naef A, Holliger E, Widmer A, Gölles M, Linder C, Dubuis PH, Kehrli P, Wirth J (2010) Empfohlene Pflanzenschutzmittel für den Erwerbsobstbau 2010. Flugschrift 122. Schweizerische Zeitschrift für Obst- und Weinbau Nr. 2, 2010: 1–19Google Scholar
  73. Holliger E (2009) Feuerbrand in der Schweiz: Befallsentwicklung und Massnahmen in den letzten 10 Jahren. Nachr Dtsch Pflanzenschutzd 60:239Google Scholar
  74. Hommel B, Strassemayer J, Pallutt B (2006) Bewertung von herbizidresistenten Kulturpflanzen in Bezug auf das Reduktionsprogramm chemischer Pflanzenschutz—Auswertung eines 8-jährigen Dauerversuchs mit glufosinatresistentem Raps und Mais. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft XX, 13–20Google Scholar
  75. Howe CM, Berrill M, Pauli BD, Helbing CC, Werry K, Veldhoen N (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23:1928–1938. doi: 10.1897/03-71 PubMedCrossRefGoogle Scholar
  76. Huber DM (2007) What about glyphosate-induced manganese deficiency? Fluid J Fall 2007:20–22Google Scholar
  77. Hüsken A, Ammann K, Messeguer J, Papa R, Robson P, Schiemann J, Squire GR, Stamp P, Sweet J, Wilhelm R (2007) A major European synthesis of data on pollen and seed mediated gene flow in maize in the SIGMEA project, unpublished.
  78. Hütter E, Bigler F, Fried PM (2000) Transgene schädlingsresistente Pflanzen in der Schweiz? Agrarforschung 7:148–153Google Scholar
  79. Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586. doi: 10.1016/j.soilbio.2007.11.002 CrossRefGoogle Scholar
  80. Icoz I, Saxena D, Andow DA, Zwahlen C, Stotzky G (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing cry proteins from Bacillus thuringiensis. J Environ Qual 37:647–662PubMedCrossRefGoogle Scholar
  81. James C (2010) Global status of commercialized biotech/GM crops: 2010. ISAAA brief no. 42. ISAAA, IthacaGoogle Scholar
  82. Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152. doi: 10.1016/j.eja.2009.04.004 CrossRefGoogle Scholar
  83. Johnson WG, Davis VM, Kruger GR, Weller SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31:162–172. doi: 10.1016/j.eja.2009.03.008 CrossRefGoogle Scholar
  84. Jones JDG (2011) Why genetically modified crops? Phil Trans R Soc A 369:1807–1816. doi: 10.1098/rsta.2010.0345 PubMedCrossRefGoogle Scholar
  85. Kasamba E, Copeland J (2007) Economics of co-existence measures of GM and conventional crops: oilseed rape in Fife (Scotland). Working paper SIGMEA projectGoogle Scholar
  86. Kleter GA, Harris C, Stephenson G, Unsworth J (2008) Comparison of herbicide regimes and the associated potential environmental effects of glyphosate-resistant crops versus what they replace in Europe. Pest Manag Sci 64:479–488. doi: 10.1002/ps.1513 PubMedCrossRefGoogle Scholar
  87. Kravchenko AN, Hao X, Robertson GP (2009) Seven years of continuously planted Bt corn did not affect mineralizable and total soil C and total N in surface soil. Plant Soil 318:269–274. doi: 10.1007/s11104-008-9836-5 CrossRefGoogle Scholar
  88. KTBL (2008) Betriebsplanung Landwirtschaft 2008/09. Kuratorium für Technik und Bauwesen in der Landwirtschaft, DarmstadtGoogle Scholar
  89. Landwirtschaftliches Zentrum SG (2006) Neupflanzung von Hochstammobstbäumen im Rahmen von Vernetzungsprojekten und PflanzaktionenGoogle Scholar
  90. Lang A, Otto M (2010) A synthesis of laboratory and field studies on the effects of transgenic Bacillus thuringiensis (Bt) maize on non-target Lepidoptera. Entomol Exp Appl 135:121–134CrossRefGoogle Scholar
  91. Lang A, Vojtech E (2006) The effects of pollen consumption of transgenic Bt maize on the common swallowtail, Papilio machaon L. (Lepidoptera, Papilionidae). Basic and Appl Ecol 7:296–306. doi: 10.1016/j.baae.2005.10.003 CrossRefGoogle Scholar
  92. LaReesa Wolfenbarger L, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3:e2118PubMedCrossRefGoogle Scholar
  93. Ledermann T, Schneider F (2008) Verbreitung der Direktsaat in der Schweiz. Agrarforschung 15:408–413Google Scholar
  94. Leu C, Singer H, Stamm C, Müller SR, Schwarzenbach RP (2004) Simultaneous assessment of sources, processes, and factors influencing herbicide losses due to surface waters in a small agricultural catchment. Environ Sci Technol 38:3827–3834. doi: 10.1021/es0499602 PubMedCrossRefGoogle Scholar
  95. Leu C, Singer H, Müller SR, Schwarzenbach RP, Stamm C (2005) Comparison of atrazine losses in three small headwater catchments. J Environ Qual 34:1873–1882. doi: 10.2134/jeq2005.0049 PubMedCrossRefGoogle Scholar
  96. Liphadzi KB, Al-Khatib K, Bensch CN, Stahlmann PW, Dille J, Todd T, Rice CW, Horak MJ, Head G (2005) Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system. Weed Sci 53:536–545. doi: 10.1614/WS-04-129R1 CrossRefGoogle Scholar
  97. Lutman PJW (2003) Co-existence of conventional, organic and GM crops—role of temporal and spatial behaviour of seeds. In: Boelt B (ed) Proceedings of the 1st European conference on the co-existence of genetically modified crops with conventional and organic crops. Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg, Slagelse, pp 33–42Google Scholar
  98. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi: 10.1126/science.1071148 PubMedCrossRefGoogle Scholar
  99. Mäder P, Fliessbach A, Dubois D, Gunst L, Jossi W, Widmer F, Oberson A, Frossard E, Oehl F, Wiemken A, Gattinger A, Niggli U (2006) The DOK experiment (Switzerland). In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series No. 1. Dr. Köster, Berlin, pp 41–58Google Scholar
  100. Mann S (2011) Koexistenz möglich, Nutzen noch fraglich. Newsletter NFP59 6:1–4Google Scholar
  101. Mann RM, Hyne RV, Choung CB, Wilson SB (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927. doi: 10.1016/j.envpol.2009.05.015 PubMedCrossRefGoogle Scholar
  102. Marvier M, Van Acker RC (2005) Can crop transgenes be kept on a leash? Front Ecol Environ 3:99–106. doi: 10.1890/1540-9295(2005)003[0093:CCTBKO]2.0.CO;2 CrossRefGoogle Scholar
  103. Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1476. doi: 10.1126/science.1139208 PubMedCrossRefGoogle Scholar
  104. Menrad K, Gabriel A, Gylling M, Larsen A, Voltolina P, Stolze M, Morgner M, Oehen B, Maciejczak M, Gryson N, Eeckhout M (2009) Costs and benefits of co-existence and traceability between GM and non-GM supply chains. CoExtra Synthesis report WP3, WeihenstephanGoogle Scholar
  105. Menzel G, Lünsmann I, Middelhoff U, Breckling B, Schmidt G, Tillmann J, Windhurst W, Schröder W, Filser J, Reuter H (2005) Gentechnisch veränderte Pflanzen und Schutzgebiete—Wirksamkeit von Abstandsregelungen. Bundesamt für Naturschutz, Bad GodesbergGoogle Scholar
  106. Meyer A, Hanser E, Dierauer HU (2008) Deckungsbeiträge. Ausgabe 2008. AGRIDEA, LindauGoogle Scholar
  107. Mijangos I, Becerril JM, Albizu I, Epelde L, Garbisu C (2009) Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and -independent methodologies. Soil Biol Biochem 41:505–513. doi: 10.1016/j.soilbio.2008.12.009 CrossRefGoogle Scholar
  108. Møller HE, Djurhuus J (1997) Nitrate leaching as influenced by soil tillage and catch crop. Soil Tillage Res 41:203–219CrossRefGoogle Scholar
  109. Nowicki P, Weeger C, van Meijl H, Banse M, Helming J, Terluin I, Verhoog D, Overmars K, Westhoek H, Knierim A, Reutter M, Matzdorf B, Meargraf O, Mnatsakanian R (2007) Scenar 2020—Scenario study on agriculture and the rural world. European Commission, DG Agriculture and Rural Development.
  110. Obrist LB, Dutton A, Albajes R, Bigler F (2006) Exposure of arthropod predators to cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–154. doi: 10.1111/j.0307-6946.2006.00762.x CrossRefGoogle Scholar
  111. Park JR, McFarlane I, Hartley Phillips R, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21CrossRefGoogle Scholar
  112. Paustian K (2005) Soils, global change and global sustainability. 15th meeting of the Italian Society of Ecology, Torino 2005Google Scholar
  113. Peterson G, Cunningham S, Deutsch L, Erickson J, Quinlan A, Raez-Luna E, Tinch R, Troell M, Woodbury P, Zens S (2000) The risks and benefits of genetically modified crops: a multidisciplinary perspective. Conserv Ecol 4:13Google Scholar
  114. Peterson JA, Obrycki JJ, Harwood JD (2009) Quantification of Bt-endotoxin exposure pathways in carabid food webs across multiple transgenic events. Biocontrol Sci Tech 19:613–625. doi: 10.1080/09583150902968972 CrossRefGoogle Scholar
  115. Powles SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365. doi: 10.1002/ps.1525 PubMedCrossRefGoogle Scholar
  116. Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. doi: 10.1016/j.scitotenv.2007.04.046 PubMedCrossRefGoogle Scholar
  117. Reim S (2008) Beiträge zur Bewertung der Umweltverträglichkeit gentechnisch veränderter Apfelgehölze. Dissertation. Julius-Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, QuedlinburgGoogle Scholar
  118. Reim S (2009) Erhaltung von Malus sylvestris unter in situ-Bedingungen im Osterzgebirge. Nachwuchswissenschaftlerforum 2009. Julius-Kühn-Archiv 424:38–40Google Scholar
  119. Reitmeier D, Menrad K, Demont M, Diems W, Turley D (2006) Methods for calculation of co-existence costs in agriculture. Task Guidelines of WP 5 within Project SIGMEA.
  120. Relyea RA (2005) The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124. doi: 10.1890/04-1291 CrossRefGoogle Scholar
  121. Relyea RA, Schoeppner NM, Hoverman JT (2005) Pesticides and amphibians: the importance of community context. Ecol Appl 15:1125–1134. doi: 10.1890/04-0559 CrossRefGoogle Scholar
  122. Rodrigo-Simon A, de Maagd RA, Avilla C, Bakker PL, Molthoff J, Gonzalez-Zamora JE, Ferré J (2006) Lack of detrimental effect of Bacillus thuringiensis cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological and biochemical analysis. Appl Environ Microbiol 72:1595–1603. doi: 10.1128/AEM.72.2.1595-1603.2006 PubMedCrossRefGoogle Scholar
  123. Romeis J, Dutton A, Bigler F (2004) Bacillus thuringiensis toxin (cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Insect Physiol 50:175–183. doi: 10.1016/j.jinsphys.2003.11.004 PubMedCrossRefGoogle Scholar
  124. Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, Griffiths NA, Pokelsek J, Stephan ML (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. PNAS 104:16204–16208. doi: 0.1073/pnas.0707177104 PubMedCrossRefGoogle Scholar
  125. Roy DB, Bohan DA, Haughton AJ, Hill MO, Osborne JL, Clark SJ, Perry JN, Rotherry P, Scott RJ, Brooks DR, Champion GT, Hawes C, Heard MS, Firbank LG (2003) Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B 358:1879–1898CrossRefGoogle Scholar
  126. Russell W (2008) GMOs and their contexts: a comparison of potential and actual performance of GM crops in a local agricultural setting. Geoforum 39:213–222CrossRefGoogle Scholar
  127. Sanvido O, Widmer F, Winzeler M, Streit B, Szerencsits E, Bigler F (2005) Koexistenz verschiedener landwirtschaftlicher Anbausystems mit und ohne Gentechnik. Schriftenreihe der FAL 55. Agroscope FAL Reckenholz, ZürichGoogle Scholar
  128. Sanvido O, Stark M, Romeis J, Bigler F (2006) Ecological impacts of genetically modified crops. Experiences from ten years of experimental field research and commercial cultivation. Agroscope ART, ZürichGoogle Scholar
  129. Schärer H-J (2000) Feuerbrand, ein Dauerbrenner. Agrarforschung 7:404–409Google Scholar
  130. Schaub L, Auer J (2008) 50 Jahre Prävention der Zystennematoden der Kartoffel. Press release of 2.12.2008. Agroscope ACWGoogle Scholar
  131. Schmidt JEU, Braun CU, Whitehouse LP, Hilbeck A (2009) Effects of activated Bt transgene products (cry1Ab, cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity tests. Arch Environ Contam Toxicol 56:221–228. doi: 10.1007/s00244-008-9191-9 PubMedCrossRefGoogle Scholar
  132. Schoch H (2009) Preiskatalog. Ausgabe 2009. AGRIDEA, LindauGoogle Scholar
  133. SFZ (2011) Sortenangebot 2011. Leistungsprüfung 2008–2010. Schweizerische Fachstelle für Zuckerrübenanbau.
  134. Singer HP, Anfang HG, Lück A, Peter A, Müller SR (2005) Pestizidbelastung der Oberflächengewässer. gwa––Gas Wasser Abwasser 11/2005, 879–886Google Scholar
  135. Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedie JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404CrossRefGoogle Scholar
  136. Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van der Kraak GJ (2008) Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38:721–772. doi: 10.1080/10408440802116496 PubMedCrossRefGoogle Scholar
  137. Soukup J, Holec J, Jursik M, Hamouzova K (2011) Environmental and agronomic monitoring of adverse effects due to cultivation of genetically modified herbicide tolerant crops. J Verbr Lebensm 6:S125–S130. doi: 10.1007/s00003-011-0682-7 CrossRefGoogle Scholar
  138. Steinbach HS, Alvarez R (2006) Changes in soil organic carbon contents and nitrous oxide emissions after introduction on no-till in Pampean agroecosystems. J Environ Qual 35:3–13. doi: 10.2134/jeq2005.0050 PubMedCrossRefGoogle Scholar
  139. Stotzky G (2004) Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant Soil 266:77–89. doi: 10.1007/s11104-005-5945-6 CrossRefGoogle Scholar
  140. Strandberg B, Pedersen MB (2002) Biodiversity in glyphosate tolerant fodder beet fields - timing of herbicide application. NERI Technical Report No. 410. National Environmental Research Institute, Denmark. Available at:
  141. Sweet J, Simpson E, Law J, Lutman P, Berry K, Payne R, Champion G, May M, Walker K, Wightman P, Lainsbury M (2004) Botanical and rotational implications of genetically modified herbicide tolerance in winter oilseed rape and sugar beet (BRIGHT Project). HGCA Project Report No. 353. Home Grown Cereals Authority, London. Available at:
  142. Swiss Federal Council (2002) Sustainable Development Strategy 2002Google Scholar
  143. Tank JL, Rosi-Marshall EJ, Royer TV, Whiles MR, Griffits NA, Frauendorf TC, Treering DJ (2010) Occurrence of maize detritus and a transgenic insecticidal protein (cry1Ab) within the stream network of an agricultural landscape. Proc Natl Acad Sci. doi: 10.1073/pnas.1006925107
  144. Tappeser B, Eckelkamp C, Weber B (2000) Untersuchungen zu tatsächlich beobachteten nachteiligen Effekten von Freisetzungen gentechnisch veränderter Organismen. Monographien Band 129. Umweltbundesamt, WienGoogle Scholar
  145. Trigo EJ, Cap EJ (2006) Ten years of genetically modified crops in argentine agriculture. ArgenBio. pp. 1–52Google Scholar
  146. UNDSD. (1992) Agenda 21. Konferenz der Vereinten Nationen für Umwelt und Entwicklung, Rio de JaneiroGoogle Scholar
  147. United Nations General Assembly. (1987) Our common future, from one earth to one world. Report of the World Commission on Environment and Development. A/42/427Google Scholar
  148. Vogler U, Rott AS, Gessler C, Dorn S (2010) How transgenic and classically bred apple genotypes affect non-target organisms on higher trophic levels. Entomol Exp Appl 134:114–121. doi: 10.1111/j.1570-7458.2009.00942.x CrossRefGoogle Scholar
  149. Watkinson AR, Freckleton RP, Robinson RA, Sutherland WJ (2000) Predictions of biodiversity response to genetically modified herbicide-tolerant crops. Science 289:1554–1557. doi: 10.1126/science.289.5484.1554 PubMedCrossRefGoogle Scholar
  150. Weaver MA, Krutz LJ, Zablotowicz RM, Reddy KN (2007) Effects of glyphosate on soil microbial communities and its mineralisation in a Mississippi soil. Pest Manag Sci 63:388–393PubMedCrossRefGoogle Scholar
  151. Weibel FP, Leder A (2007) Experiences with the Swiss (organic) method how to introduce new apple varieties into retail market: Flavour Group Concept and Variety Team. Compact Fruit Tree 40:1–5Google Scholar
  152. Wolf D (2009) Erfahrungen zum ökonomischen Nutzen herbizidtoleranter Kulturen. Agrarforschung 16:52–57Google Scholar
  153. Wolf D, Albisser Vögeli G (2009) Ökonomischer Nutzen von Bt-Mais ist relativ. Agrarforschung 16:4–9Google Scholar
  154. Wyss E (1995) The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol Exp Appl 75:43–49. doi: 10.1111/j.1570-7458.1995.tb01908.x CrossRefGoogle Scholar
  155. Yamada T, Kremer RJ, de Camargo e Castro PR, Wood BW (2009) Glyphosate interactions with physiology, nutrition, and diseases of plants: threat to agricultural sustainability? Eur J Agron 31:111–113. doi: 10.1016/j.eja.2009.07.004 CrossRefGoogle Scholar
  156. Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B (2010) Transgene x environment interactions in genetically modified wheat. PLoS One 5:e11405. doi: 10.1371/journal.pone.0011405 PubMedCrossRefGoogle Scholar
  157. Zhao JH, Ho P, Azadi H (2011) Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China. Environ Monit Assess 173:985–994. doi: 10.1007/s10661-010-1439-y PubMedCrossRefGoogle Scholar
  158. Zwahlen C, Andow DA (2005) Field evidence for the exposure of ground beetles to cry1Ab from transgenic corn. Environ Biosaf Res 4:113–117. doi: 10.1051/ebr:2005014 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag, France 2012

Authors and Affiliations

  • Bernhard Speiser
    • 1
  • Matthias Stolze
    • 1
  • Bernadette Oehen
    • 1
  • Cesare Gessler
    • 2
  • Franco P. Weibel
    • 1
  • Esther Bravin
    • 3
  • Adeline Kilchenmann
    • 3
  • Albert Widmer
    • 3
  • Raffael Charles
    • 3
  • Andreas Lang
    • 4
  • Christian Stamm
    • 5
  • Peter Triloff
    • 6
  • Lucius Tamm
    • 1
    Email author
  1. 1.Research Institute of Organic Agriculture FiBLFrickSwitzerland
  2. 2.ETH Zürich, Institut f. Integrative Biologie, LFW C15ZürichSwitzerland
  3. 3.Forschungsanstalt Agroscope Changins-Wädenswil ACWNyon 1Switzerland
  4. 4.Departement UmweltwissenschaftenUniversität BaselBaselSwitzerland
  5. 5.Swiss Federal Institute for Environmental Sciences and Technology (Eawag), Environmental ChemistryDübendorfSwitzerland
  6. 6.Marktgemeinschaft Bodenseeobst EGFriedrichshafenGermany

Personalised recommendations