Skip to main content

Advertisement

Log in

Innovations in parasitic weeds management in legume crops. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Parasitic weeds decrease severely the production of major grain and forage legumes. The most economically damaging weeds for temperate legumes are broomrapes, in particular Orobanche crenata. Broomrape species such as Orobanche foetida, Orobanche minor, and Phelipanche aegyptiaca can also induce high local damage. Other parasitic weeds such as Striga gesnerioides and Alectra vogelii decrease yield of legume crops throughout semi-arid areas of sub-Saharan Africa. Dodders such as Cuscuta campestris can be damaging for some crops. Here, we review methods to control parasitic weeds. Preventing the movement of weed seeds into uninfested areas is a crucial component of control. Once a field is infested with parasitic weeds, controlling its seed production is very difficult. The only effective way to cope with parasitic weeds is to apply an integrated approach. Seedbank demise can be achieved by fumigation and solarization. However, this method is not economically feasible for low-value and low-input legume crops. A number of cultural practices including delayed sowing, hand weeding, no-tillage, nitrogen fertilization, intercropping, or rotations can contribute to seed bank demise. Other strategies such as suicidal germination, activation of systemic acquired resistance, biocontrol or target site herbicide resistance are promising solutions that are being explored but are not yet ready for direct application. The only methods currently available to farmers are the use of resistant varieties and chemical control, although both have their limitations. Chemical control with systemic herbicides such as glyphosate or imidazolinones at low rates is possible. Advances in modeling and the availability of new technologies allow the development of precision agriculture or site-specific farming. The most economical and environmentally friendly control option is the use of resistant crop varieties; however, breeding for resistance is a difficult task considering the scarce and complex nature of resistance in most crops. These strategies for parasitic weed management in legume crops will be presented and critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbes Z, Kharrat M, Delavault P, Simier P, Chaibi W (2007) Field evaluation of the resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche foetida Poiret. Crop Prot 26:1777–1784

    Google Scholar 

  • BASF Agsolutions (2008) Available at http://www.agsolutions.ca/basf/agprocan/agsolutions/WebASClearfield.nsf/mainLentils.htm

  • Amsellem Z, Barghouthi S, Cohen B, Goldwasser I, Gressel J, Hornok L, Kerenyi Z, Kleifeld I, Klein O, Kroschel J, Sauerborn J, Müller-Stöver D, Thomas H, Vurro M, Zonno MCh (2001) Recent advances in the biocontrol of Orobanche (broomrape) species. Biocontrol 46:211–228

    CAS  Google Scholar 

  • Andary C (1993) Novel derivative of caffeic acid, oraposide, cosmetic or pharmaceutical, particularly dermatological, composition containing it. European Patent EP0576420

  • Andolfi A, Boari A, Evidente A, Vurro M (2005) Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum. J Agric Food Chem 53:1598–1603

    PubMed  CAS  Google Scholar 

  • Arjona-Berral A, García-Torres L (1983) Broomrape control in lentils with glyphosate. Lens Newsl 10:20–22

    Google Scholar 

  • Arjona-Berral A, Mesa-García J, García-Torres L (1988) Herbicide control of broomrapes in peas and lentils. FAO Plant Prot Bull 36:175–178

    Google Scholar 

  • Atokple IDK, Singh BB, Emechebe AM (1993) Independent inheritance of Striga and Alectra resistance in cowpea genotype B301. Crop Sci 33:714–715

    Google Scholar 

  • Atokple IDK, Singh BB, Emechebe AM (1995) Genetics of resistance to Striga and Alectra in cowpea. J Hered 86:45–49

    Google Scholar 

  • Baghestani A, Lemieux C, Leroux GD, Baziramakenga R, Simard RR (1999) Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci 47:498–504

    CAS  Google Scholar 

  • Bayaa B, El-Hossein N, Erskine W (2000) Attractive but deadly. ICARDA Caravan 12:16

    Google Scholar 

  • Berner DK, Williams OA (1998) Germination stimulation of Striga gesnerioides seeds by hosts and nonhosts. Plant Dis 82:1242–1247

    Google Scholar 

  • Berner DK, Awad AE, Aigbokhan EI (1994) Potential of imazaquin seed treatment for control of Striga gesnerioides and Alectra vogelii in cowpea (Vigna unguiculata). Plant Dis 78:18–23

    Google Scholar 

  • Berner DK, Schaad NW, Volksch B (1999) Use of ethylene-producing bacteria for stimulating of Striga spp. seed germination. Biol Control 15:274–282

    Google Scholar 

  • Boari A, Vurro M (2004) Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa). Biol Control 30:212–219

    Google Scholar 

  • Borsics T, Lados M (2001) cDNA cloning of a mechanical/abiotic stress-inducible calmodulin-related gene from dodder-infected alfalfa. Plant Cell Environ 24:649–656

    CAS  Google Scholar 

  • Borsics T, Lados M (2002) Dodder infection induces the expression of a pathogenesis-related gene of the family PR-10 in alfalfa. J Exp Bot 53:1831–1832

    PubMed  CAS  Google Scholar 

  • Botanga CJ, Timko MP (2006) Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 49:1351–1365

    PubMed  Google Scholar 

  • Castillejo MA, Amiour N, Dumas-Gaudot E, Rubiales D, Jorrín JV (2004) A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochem 65:1817–1828

    Google Scholar 

  • Castillejo MA, Maldonado AM, Dumas-Gaudot E, Fernández-Aparicio M, Susin R, Rubiales D, Jorrín J (2009) Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula. BMC Genomics 10:294

    PubMed  Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    Google Scholar 

  • Colquhoun JB, Eizenberg H, Mallory Smith CA (2006) Herbicide placement site affects small broomrape (Orobanche minor) control in red clover (Trifolium pratense). Weed Technol 20:356–360

    CAS  Google Scholar 

  • Confalonieri M, Cammareri M, Biazzi E, Pecchia P, Fevereiro MPS, Balestrazzi A, Tava A, Conicella C (2009) Enhanced triterpene saponin biosynthesis and root nodulation in transgenic barrel medic (Medicago truncatula Gaertn.) expressing a novel β-amyrin synthase (AsOXA1) gene. Plant Biotechnol J 7:172–182

    PubMed  CAS  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra R, de-la-Fuente JM, Rubiales D, Pérez-de-Luque A, Risueno MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    PubMed  Google Scholar 

  • Cudney DW, Lanini WT (2000) Dodder. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology—volume I. John Wiley & Sons, Inc, NY, pp 376–379

    Google Scholar 

  • Dadon T, Nun NB, Mayer AM (2004) A factor from Azospirillum brasilense inhibits germination and radicle growth of Orobanche aegyptiaca. Isr J Plant Sci 52:83–86

    CAS  Google Scholar 

  • Dawson JH (1989) Dodder (Cuscuta spp.) control in established alfalfa (Medicago sativa) with glyphosate and SC-0224. Weed Technol 3:552–559

    CAS  Google Scholar 

  • Dawson JH (1990) Dodder (Cuscuta spp.) control with dinitroaniline herbicides in alfalfa (Medicago sativa). Weed Technol 4:341–348

    CAS  Google Scholar 

  • Díaz-Ruiz R, Torres A, Gutiérrez MV, Rubiales D, Cubero JI, Kharrat M, Satovic Z, Román B (2009) Mapping of quantitative trait loci controlling Orobanche foetida Poir. resistance in faba bean (Vicia faba L.). Afr J Biotechnol 8:2718–2724

    Google Scholar 

  • Díaz-Ruiz R, Torres AM, Satovic Z, Gutiérrez MV, Cubero JI, Román B (2010) Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor Appl Genet 120:909–919

    PubMed  Google Scholar 

  • Die JV, Dita MA, Krajinski F, González-Verdejo CI, Rubiales D, Moreno MT et al (2007) Identification by suppression subtractive hybridization and expression analysis of Medicago truncatula putative defence genes in response to Orobanche crenata parasitization. Physiol Mol Plant Pathol 70:49–59

    CAS  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Google Scholar 

  • Dita MA, Die JV, Román B, Krajinski F, Küster H, Moreno MT, Cubero JI, Rubiales D (2009) Gene expression profiling of Medicago truncatula roots in response to the parasitic plant Orobanche crenata. Weed Res 49:66–80

    CAS  Google Scholar 

  • Dor E, Hershenhorn J (2009) Evaluation of the pathogenicity of microorganisms isolated from Egyptian broomrape (Orobanche aegyptiaca) in Israel. Weed Biol Manag 9:200–208

    Google Scholar 

  • Dor E, Vurro M, Hershenhorn J (2003) The efficacy of a mixture of fungi to control Egyptian and sunflower broomrape. In: COST Action 849: Parasitic plant management in sustainable agriculture. Meeting on biology and control of broomrape 30 Oct.–2 Nov. Athens, Greece

  • Duke SO, Cerdeira AL (2005) Potential environmental impact of herbicide-resistant crops. Coll Bio Rev 2:66–143

    Google Scholar 

  • Economou G, Lyra D, Sotirakoglou K, Fasseas K, Taradilis P (2007) Stimulating Orobanche ramosa seed germination with an Ascophyllum nodosum extract. Phytoparasitica 35:367–375

    Google Scholar 

  • Eizenberg H, Colquhoun JB, Mallory-Smith CA (2005) A predictive degree-days model for small broomrape (Orobanche minor) parasitism in red clover in Oregon. Weed Sci 53:37–40

    CAS  Google Scholar 

  • Ejeta G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host–parasite biology. Crop Sci 47:216–227

    Google Scholar 

  • El-Kassas R, Karam El-Din Z, Beale MH, Ward JL, Strange RN (2005) Bioassay-led isolation of Myrothecium verrucaria and verrucarin A as germination inhibitors of Orobanche crenata. Weed Res 45:212–219

    CAS  Google Scholar 

  • Evidente A, Fernández-Aparicio M, Andolfi A, Rubiales D, Motta A (2007) Trigoxazonane, a monosubstituted trioxazonane by Trigonella foenum-graecum root exudate, inhibiting agent of Orobanche crenata seed germination. Phytochem 68:2487–2492

    CAS  Google Scholar 

  • Evidente A, Fernández-Aparicio M, Cimmino A, Rubiales D, Andolfi A, Motta A (2009) Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett 50:6955–6958

    CAS  Google Scholar 

  • Evidente A, Cimmino A, Fernández-Aparicio M, Andolfi A, Rubiales D, Motta A (2010) Polyphenols, including the new Peapolyphenols A–C, from pea root exudates stimulate Orobanche foetida seed germination. J Agric Food Chem 58:2902–2907

    PubMed  CAS  Google Scholar 

  • Evidente A, Cimmino A, Fernández-Aparicio M, Rubiales D, Andolfi A, Melck D (2011) Soyasapogenol B and trans-22-dehydrocampesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manag Sci 67:1015–1022

    Google Scholar 

  • Fernández-Aparicio M, Rubiales D (2010) Characterisation of resistance to crenate broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L. Euphytica 173:77–84

    Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Rubiales D (2007) Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Prot 26:1166–1172

    Google Scholar 

  • Fernández-Aparicio M, Andolfi A, Cimmino A, Rubiales D, Evidente A (2008a) Stimulation of seed germination of Orobanche species by ophiobolin A and fusicoccins derivatives. J Agric Food Chem 56:8343–8347

    PubMed  Google Scholar 

  • Fernández-Aparicio M, Andolfi A, Evidente A, Pérez-de-Luque A, Rubiales D (2008b) Fenugreek root exudates show species-specific stimulation of Orobanche seed germination. Weed Res 48:163–168

    Google Scholar 

  • Fernández-Aparicio M, Emeran AA, Rubiales D (2008c) Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot 27:653–659

    Google Scholar 

  • Fernández-Aparicio M, Pérez-de-Luque A, Prats E, Rubiales D (2008d) Variability of interactions between barrel medic (Medicago truncatula) genotypes and Orobanche species. Ann Appl Biol 153:117–126

    Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Pérez-de-Luque A, Rubiales D (2008e) Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res 48:85–94

    Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Rubiales D (2008f) Resistance to broomrape species (Orobanche spp.) in common vetch (Vicia sativa L.). Crop Prot 28:7–12

    Google Scholar 

  • Fernández-Aparicio M, Flores F, Rubiales D (2009a) Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Ann Bot 103:423–431

    PubMed  Google Scholar 

  • Fernández-Aparicio M, Flores F, Rubiales D (2009b) Field response of Lathyrus cicera germplasm to crenate broomrape (Orobanche crenata). Field Crops Res 113:321–327

    Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Rubiales D (2009c) Resistance to broomrape in wild lentils (Lens spp.). Plant Breeding 128:266–270

    Google Scholar 

  • Fernández-Aparicio M, Emeran AA, Rubiales D (2010a) Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Prot 29:867–871

    Google Scholar 

  • Fernández-Aparicio M, García-Garrido JM, Ocampo JA, Rubiales D (2010b) Colonization of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res 50:262–268

    Google Scholar 

  • Fernández-Aparicio M, Yoneyama K, Rubiales D (2011) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21:55–61

    Google Scholar 

  • Fernández-Martínez JM, Domínguez J, Pérez-Vich B, Velasco L (2008) Update on breeding for resistance to sunflower broomrape. Helia 31:73–84

    Google Scholar 

  • Fondevilla S, Fernández-Aparicio M, Satovic Z, Emeran AA, Torres AM, Moreno MT, Rubiales D (2010) Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol Breed 25:259–272

    CAS  Google Scholar 

  • Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011) Identification of genes differentially expressed in a resistant reaction to Mycospherella pinodes in pea using microarray technology. BMC Genomics 12:28. doi:10.1186/1471-2164-12-28

    PubMed  CAS  Google Scholar 

  • Foy CL, Jain R, Jacobsohn R (1989) Recent approaches for chemical control of broomrape (Orobanche spp.)—a review. Rev Weed Sci 4:123–152

    CAS  Google Scholar 

  • García-Torres L, López-Granados F (1991) Control of broomrape (Orobanche crenata Forks) in broad bean (Vicia faba L.) with imidazolinones and other herbicides. Weed Res 31:227–235

    Google Scholar 

  • Ghersa CM, Martínez-Ghersa MA (2000) Ecological of weed seed size and persistence in the soil under different tilling systems: implications for weed management. Field Crops Res 67:141–148

    Google Scholar 

  • Gil J, Martín LM, Cubero JI (1987) Genetics of resistance in Vicia sativa L. to Orobanche crenata Forsk. Plant Breeding 99:134–143

    Google Scholar 

  • Goldwasser Y, Kleifeld Y, Plakhine D, Rubin B (1997) Variation in vetch (Vicia spp.) response to Orobanche aegyptiaca. Weed Sci 45:756–762

    CAS  Google Scholar 

  • Goldwasser Y, Hershenhorn J, Plakhine D, Kleifeld Y, Rubin B (1999) Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiol Molec Plant Pathol 54:87–96

    CAS  Google Scholar 

  • Goldwasser Y, Sibony M, Rubin B (2009) Screening of chickpea (Cicer arietinum) genotypes for Field Dodder (Cuscuta campestris) resistance. In: Rubiales D, Westwood J, Uludag A (eds) Proceedings of 10th World Congress of Parasitic Plants, 8–12 June 2009, Kusadasi, Turkey, p. 126

  • Gonsior G, Buschmann H, Szinicz G, Spring O, Sauerborn J (2004) Induced resistance—an innovative approach to manage branched broomrape (Orobanche ramosa) in hemp and tobacco. Weed Sci 52:1050–1053

    CAS  Google Scholar 

  • González-Andújar JL, Martínez-Cob A, López-Granados F, García-Torres L (2001) Spatial distribution and mapping of crenate broomrape infestations in continuous broad bean cropping. Weed Sci 49:773–779

    Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann Bot 101:187–195

    PubMed  Google Scholar 

  • Grenz JH, Sauerborn J (2007) Mechanisms limiting the geographical range of the parasitic weed Orobanche crenata. Agric Ecosyst Environ 122:275–281

    Google Scholar 

  • Grenz JH, Manschadi AM, Uygurc FN, Sauerborn J (2005) Effects of environment and sowing date on the competition between faba bean (Vicia faba) and the parasitic weed Orobanche crenata. Field Crops Res 93:300–313

    Google Scholar 

  • Gressel J (2009) Crops with target-site herbicide resistance for Orobanche and Striga control. Pest Manag Sci 65:560–565

    PubMed  CAS  Google Scholar 

  • Gressel J, Hana A, Head G, Marasas W, Obilana B, Ochanda J, Souissi T, Tzotzos G (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:661–689

    Google Scholar 

  • Gurney AL, Slate J, Press MC, Scholes JD (2006) A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol 169:199–208

    PubMed  CAS  Google Scholar 

  • Haidar MA, Sidhamed MM (2000) Soil solarization and chicken manure for the control of Orobanche crenata and other weeds in Lebanon. Crop Prot 19:169–173

    Google Scholar 

  • Hanson BD, Hill DC (2001) Effects of imazethapyr and pendimethalin on lentil (Lens culinaris), pea (Pisum sativum), and a subsequent winter wheat (Triticum aestivum) crop. Weed Technol 15:190–194

    CAS  Google Scholar 

  • Jacobsohn R, Kelman Y (1980) Effectiveness of glyphosate in broomrape (Orobanche spp.) control in four crops (broadbeans, peas, carrots, tomatoes). Weed Sci 28:692–699

    CAS  Google Scholar 

  • Joel DM (2000) A new virulent race of Orobanche crenata. Haustorium 37. Available at http://www.odu.edu/~lmusselm/haustorium/haustorium37.shtml

  • Joel DM, Hershenhorn J, Eizenberg H, Aly R, Ejeta G, Rich PJ, Ransom JK, Sauerborn J, Rubiales D (2007) Biology and management of weedy root parasites. Hortic Rev 33:267–349

    CAS  Google Scholar 

  • Johnson AW, Rosebery G, Parker C (1976) A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res 16:223–227

    CAS  Google Scholar 

  • Jurado-Expósito M, Castejón-Muñoz M, García-Torres L (1986) Broomrape (Orobanche crenata) control with imazethapyr applied to pea (Pisum sativum) seed. Weed Technol 10:774–780

    Google Scholar 

  • Jurado-Expósito M, García-Torres L, Castejón-Muñoz M (1997) Broad bean and lentil seed treatments with imidazolinones for the control of broomrape (Orobanche crenata). J Agric Sci 129:307–314

    Google Scholar 

  • Jurado-Expósito M, López-Granados F, Atenciano S, García-Torres L, González-Andújar JL (2003) Discrimination of weed seedlings, wheat (Triticum aestivum) stubble and sunflower (Helianthus annuus) by near-infrared reflectance spectroscopy (NIRS). Crop Prot 22:1177–1180

    Google Scholar 

  • Khallida R, Beniwal SPS, Fatemi Z, Saxena MC (1993) Imazethapyr can control dodder (Cuscuta spp.) infestation in faba bean. FABIS Newsl 33:30–32

    Google Scholar 

  • Kharrat M, Halila MH, Linke KH, Haddar T (1992) First report of Orobanche foetida Poiret on faba bean in Tunisia. FABIS Newsl 30:46–47

    Google Scholar 

  • Klein O, Kroschel J (2002) Biological control of Orobanche spp. with Phytomyza orobanchia, a review. BioControl 47:245–277

    Google Scholar 

  • Kouakou CK, Timko MP, Akanvoul R, Botanga R, Skizim N, Roy-Macauley H (2009) AFLP/SSR mapping of resistance genes to Alectra vogelii in cowpea (Vigna unguiculata L. WALP). Sci Nature 6:63–70

    Google Scholar 

  • Kroschel J, Jost A, Sauerborn J (1999) Insects for Striga control: possibilities and constraints. In: Kroschel J, Mercer-Quarshie H, Sauerborn J (eds) Advances in parasitic weed control at on-farm level. Vol. I. Joint Action to Control Striga in Africa. Margraf Verlag, Weikersheim, pp 117–132

    Google Scholar 

  • Kubo M, Ueda H, Park P, Kawaguchi M, Sugimoto Y (2009) Reactions of Lotus japonicus ecotypes and mutants to root parasitic plants. J Plant Physiol 166:353–362

    PubMed  CAS  Google Scholar 

  • Kusumoto D, Goldwasser Y, Xie X, Yoneyama K, Takeuchi Y, Yoneyama K (2007) Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann Bot 100:537–544

    PubMed  CAS  Google Scholar 

  • Lane JA, Bailey JA (1992) Resistance of cowpea and cereals to the parasitic angiosperm Striga. Euphytica 63:85–93

    Google Scholar 

  • Lane JA, Bailey JA, Butler RC, Terry PJ (1993) Resistance of cowpea [Vigna unguiculata (L.) Walp.] to Striga gesnerioides (Willd) Vatke, a parasitic angiosperm. New Phytol 125:405–412

    Google Scholar 

  • Lane JA, Child DV, Reiss GC, Entcheva V, Bailey JA (1997) Crop resistance to parasitic plants. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant–parasite interactions. CAB International, Wallingford, UK, pp 81–97

    Google Scholar 

  • Lendzemo V, Kuyper TW, Vierheilig H (2009) Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi. Mycorrhiza 19:287–294

    PubMed  CAS  Google Scholar 

  • Li J, Timko MP (2009) Gene-for-gene resistance in striga–cowpea associations. Science 325:5944

    Google Scholar 

  • Li J, Lis KE, Timko MP (2009) Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides (Willd.). Pest Manag Sci 65:520–527

    PubMed  CAS  Google Scholar 

  • Linke KH, Scheibel Ch, Saxena MC, Sauerborn J (1992) Fungi occurring on Orobanche spp. and their preliminary evaluation for Orobanche control. Trop Pest Manag 38:127–130

    Google Scholar 

  • Lins RD, Colquhoun JB, Mallory-Smith CA (2006) Investigation of wheat as a trap crop for control of Orobanche minor. Weed Res 46:313–318

    Google Scholar 

  • López-Bellido RJ, Benítez-Vega J, López-Bellido L (2009) No-tillage improves broomrape control with glyphosate in faba-bean. Agron J 101:1394–1399

    Google Scholar 

  • López-Granados F, García-Torres L (1996) Effects of environmental factors on dormancy and germination of crenate broomrape (Orobanche crenata). Weed Sci 44:284–289

    Google Scholar 

  • Lozano-Baena MD, Prats E, Moreno MT, Rubiales D, Pérez-de-Luque A (2007) Medicago truncatula as a model host for legumes–parasitic plants interactions: two phenotypes of resistance for one defensive mechanism. Plant Physiol 145:437–449

    PubMed  CAS  Google Scholar 

  • Mabrouk Y, Zourgui L, Sifi B, Delavault P, Simier P, Belhadj O (2007) Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitized by Orobanche crenata. Weed Res 47:44–53

    Google Scholar 

  • Manschadi AM, Sauerborn J, Stützel H (2001) Quantitative aspects of Orobanche crenata infestation in faba beans as affected by abiotic factors and parasite soil seedbank. Weed Res 41:311–324

    Google Scholar 

  • Mauromicale G, Restuccia G, Marchese A (2001) Soil solarization, a non-chemical technique for controlling Orobanche crenata and improving yield of faba bean. Agronomie 21:757–765

    Google Scholar 

  • Mesa-García J, García-Torres L (1985) Orobanche crenata Forsk control in Vicia faba L. with glyphosate as affected by herbicide rates and parasite growth stages. Weed Res 25:129–134

    Google Scholar 

  • Mishra JS, Moorthy BTS, Bhan M, Yaduraju NT (2007) Relative tolerance of rainy season crops to field dodder (Cuscuta campestris) and its management in niger (Guizotia abyssinica). Crop Prot 26:625–629

    Google Scholar 

  • Mohamed KI, Musselman LJ, Riches C (2001) The genus Striga (Scrophulariaceae) in Africa. Ann Mo Bot Gard 88:60–103

    Google Scholar 

  • Mohamed KI, Papes M, Williams R, Benz BW, Peterson AT (2006) Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae. Ambio 35:281–288

    PubMed  Google Scholar 

  • Müller-Stöver D, Kroschel J (2005) The potential of Ulocladium botrytis for biological control of Orobanche spp. Biol Control 33:301–306

    Google Scholar 

  • Müller-Stöver D, Thomas H, Sauerborn J, Kroschel J (2004) Two granular formulations of Fusarium oxysporum f. sp. orthoceras to mitigate sunflower broomrape (Orobanche cumana). BioControl 49:595–602

    Google Scholar 

  • Müller-Stöver D, Buschmann H, Sauerborn J (2005) Increasing control reliability of Orobanche cumana through integration of a biocontrol agent with a resistance-inducing chemical. Eur J Plant Pathol 111:193–202

    Google Scholar 

  • Nassib AM, Ibrahim AA, Khalil SA (1982) Breeding for resistance to Orobanche. In: Hawtin G, Webb C (eds) Faba Bean Improvement. Martinus Nijhoft Publishers, The Netherlands, pp 199–206

    Google Scholar 

  • Orloff SB, Vargas RN, Cudney DW, Canevari WM, Schmierer J (1989) Dodder control in alfalfa. Calif Agric 43:30–31

    Google Scholar 

  • Oswald A, Ransom JK, Kroschel J, Sauerborn J (2002) Intercropping controls Striga in maize based farming systems. Crop Prot 21:367–374

    Google Scholar 

  • Ouédraogo JT, Maheshwari V, Berner D, St-Pierre CA, Belzile F, Timko MP (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036

    Google Scholar 

  • Ouédraogo JT, Tignegre JB, Timko MP, Belzile FJ (2002) AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45:787–793

    PubMed  Google Scholar 

  • Panetta FD, Lawes R (2005) Evaluation of weed eradication programs: the delimitation of extent. Divers Distrib 11:435–442

    Google Scholar 

  • Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459

    PubMed  CAS  Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB Int, Wallingford

    Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    PubMed  Google Scholar 

  • Pérez-de-Luque A, Jorrín JV, Rubiales D (2004a) Broomrape (Orobanche crenata Forks.) control in pea (Pisum sativum L.) by foliar application of benzothiadiazole (BTH). Phytoparasitica 32:21–29

    Google Scholar 

  • Pérez-de-Luque A, Sillero JC, Cubero JI, Rubiales D (2004b) Effect of sowing date and host resistance on the establishment and development of Orobanche crenata on faba bean and common vetch. Weed Res 44:282–288

    Google Scholar 

  • Pérez-de-Luque A, Sillero JC, Moral A, Rubiales D (2004c) Induction of systemic resistance in pea and faba bean to crenate broomrape (Orobanche crenata) by exogenous application of benzothiadiazole, in: Use of Natural Compound for Parasitic Plant Management, COST 849 Meeting, 29–30 October 2004, Naples, Italy, p. 12

  • Pérez-de-Luque A, Jorrín J, Cubero JI, Rubiales D (2005a) Orobanche crenata resistance and avoidance in pea (Pisum spp.) operates at different developmental stages of the parasite. Weed Res 45:379–387

    Google Scholar 

  • Pérez-de-Luque A, Rubiales D, Cubero JI, Press MC, Scholes J, Yoneyama K, Takeuchi Y, Plakhine D, Joel DM (2005b) Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann Bot 95:935–942

    PubMed  Google Scholar 

  • Pérez-de-Luque A, González-Verdejo CI, Lozano MD, Dita MA, Cubero JI, González-Melendi P, Risueño MC, Rubiales D (2006a) Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J Exp Bot 57:1461–1469

    PubMed  Google Scholar 

  • Pérez-de-Luque A, Lozano MD, Cubero JI, González-Melendi P, Risueño MC, Rubiales D (2006b) Mucilage production during the incompatible interaction between Orobanche crenata and Vicia sativa. J Exp Bot 57:931–942

    PubMed  Google Scholar 

  • Pérez-de-Luque A, Lozano MD, Rubiales D (2006c) Resistencia post-haustorial a Orobanche crenata en garbanzo. In: De los Mozos-Pascual M, Giménez-Alvear MJ, Rodíguez-Conde MF, Sánchez-Vioque R (eds) Nuevos retos y oportunidades de las leguminosas en el sector agroalimentario español, Consejería de Agricultura de Castilla-La Mancha, Toledo, Spain, pp 361–368

  • Pérez-de-Luque A, Lozano MD, Moreno MT, Testillano PS, Rubiales D (2007) Resistance to broomrape (Orobanche crenata) in faba bean (Vicia faba): cell wall changes associated with pre-haustorial defensive mechanisms. Ann Appl Biol 151:89–98

    Google Scholar 

  • Pérez-de-Luque A, Moreno MT, Rubiales D (2008) Host plant resistance against broomrapes (Orobanche spp.): defence reactions and mechanisms of resistance. Ann Appl Biol 152:131–141

    Google Scholar 

  • Pérez-de-Luque A, Fondevilla S, Pérez-Vich B, Aly R, Thoiron S, Simier P, Castillejo MA, Fernández JM, Jorrín J, Rubiales D, Delavault P (2009) Understanding broomrape–host plant interaction and developing resistance. Weed Res 49:8–22

    Google Scholar 

  • Pérez-de-Luque A, Eizenberg H, Grenz JH, Sillero JC, Ávila CM, Sauerborn J, Rubiales D (2010) Broomrape management in faba bean. Field Crops Res 115:319–328

    Google Scholar 

  • Polniaszek TI, Parker C, Riches CR (1991) Variation in virulence of Alectra vogelii populations on cowpea. Trop Pest Manag 37:152–154

    Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    PubMed  CAS  Google Scholar 

  • Riches CR (1987) The identification of resistance to Alectra vogelii Benth. (Scrophulariaceae) in cowpea. In: Weber HChr, Forstreuter W (eds) Parasitic flowering plants. Phillips University, Marburg, Germany, pp 701–708

    Google Scholar 

  • Riches CR (1989) The biology and control of Alectra vogelii Benth. (Scrophulariaceae) in Botswana. Ph.D. Thesis, University of Reading, Reading, UK

  • Riches CR, Hamilton K, Parker C (1992) Parasitism of grain legumes by Alectra species (Scrophulariaceae). Ann Appl Biol 121:361–370

    Google Scholar 

  • Rispail N, Dita MA, González-Verdejo C, Pérez-de-Luque A, Castillejo MA, Prats E, Román B, Jorrín J, Rubiales D (2007) Plant resistance to parasitic plants: current approaches for an old foe. New Phytol 173:703–712

    PubMed  CAS  Google Scholar 

  • Rispail N, Kaló P, Kiss GB, Ellis THN, Gallardo K, Thompson RD, Prats E, Larrainzar E, Ladrera R, González EM, Arrese-Igor C, Ferguson BJ, Gresshoff PM, Rubiales D (2010) Model legumes contribute to faba bean breeding. Field Crops Res 115:253–269

    Google Scholar 

  • Rodríguez-Conde MF, Moreno MT, Cubero JI, Rubiales D (2004) Characterization of the Orobanche–Medicago truncatula association for studying early stages of the parasite–host interaction. Weed Res 44:218–223

    Google Scholar 

  • Román MB, Rubiales D, Cubero JI, Torres AM, Zatovic S (2001) Genetic diversity in Orobanche crenata populations from southern Spain. Theor Appl Genet 103:1108–1114

    Google Scholar 

  • Román B, Satovic Z, Rubiales D, Torres AM, Cubero JI, Katzir N, Joel DM (2002a) Variation among and within populations of the parasitic weed Orobanche crenata from two sides of the Mediterranean revealed by ISSR markers. Phytopath 92:1262–1266

    Google Scholar 

  • Román B, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002b) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45:1057–1063

    PubMed  Google Scholar 

  • Román B, Satovic Z, Alfaro C, Moreno MT, Kharrat M, Pérez-de-Luque A, Rubiales D (2007) Host differentiation in Orobanche foetida Poir. Flora 202:201–208

    Google Scholar 

  • Rubiales D (1999) Eating broomrape? In: Cubero JI, Moreno MT, Rubiales D, Sillero JC (eds) Resistance to Orobanche: the state of the art, Publ. Junta Andalucía, Sevilla, Spain, pp 195–199

    Google Scholar 

  • Rubiales D (2003) Parasitic plants, wild relatives and the nature of resistance. New Phytol 160:459–461

    Google Scholar 

  • Rubiales D, Heide-Jørgensen HS (2011) Parasitic plants. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0021271

  • Rubiales D, Pujadas A, Román B (2001) Occurrence and distribution of Phytomiza orobanchia feeding on broomrapes (Orobanche spp.) in southern Spain, in: 7th International Parasitic Plant Symposium, Nantes, France, pp. 254–257

  • Rubiales D, Alcántara C, Joel DM, Pérez-de-Luque A, Sillero JC (2003a) Characterization of resistance in chickpea to broomrape (Orobanche crenata). Weed Sci 51:702–707

    CAS  Google Scholar 

  • Rubiales D, Alcántara C, Pérez-de-Luque A, Gil J, Sillero JC (2003b) Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions. Agronomie 23:359–362

    Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Cubero JI, Sillero JC (2003c) Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot 22:865–872

    Google Scholar 

  • Rubiales D, Alcántara C, Sillero JC (2004) Variation in resistance to crenate broomrape (Orobanche crenata) in species of Cicer. Weed Res 44:27–32

    Google Scholar 

  • Rubiales D, Moreno MT, Sillero JC (2005a) Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Gen Resour Crop Evol 52:853–861

    Google Scholar 

  • Rubiales D, Sadiki M, Román D (2005b) First report of Orobanche foetida on common vetch (Vicia sativa) in Morocco. Plant Dis 89:528

    Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Sillero JC, Román B, Kharrat M, Khalil S, Joel DM, Riches CR (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147:187–199

    Google Scholar 

  • Rubiales D, Fernández-Aparicio M, Pérez-de-Luque A, Prats E, Castillejo MA, Sillero JC, Rispail N, Fondevilla S (2009a) Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag Sci 65:553–559

    PubMed  CAS  Google Scholar 

  • Rubiales D, Fernández-Aparicio M, Wegmann K, Joel D (2009b) Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. Weed Res 49:23–33

    Google Scholar 

  • Rubin B (1994) Group B/2 resistant field dodder (Cuscuta campestris). Available at http://www.weedscience.org/Case/Case.asp?ResistID=104. Accessed 31 May 2010

  • Sauerborn J, Saxena MC (1986) A review on agronomy in relation to Orobanche control in faba bean (Vicia faba L.). In: Borg S.J.ter (ed) Proceedings of a workshop on biology and control of Orobanche, LH/VpO, Wageningen, The Netherlands, pp. 160–165

  • Sauerborn J, Linke KH, Saxena MC, Koch W (1989a) Solarization, a physical control method for weeds and parasitic plants (Orobanche spp.) in Mediterranean agriculture. Weed Res 29:391–393

    Google Scholar 

  • Sauerborn J, Saxena MC, Meyer A (1989b) Broomrape control in faba bean (Vicia faba L.) with glyphosate and imazaquin. Weed Res 29:97–102

    CAS  Google Scholar 

  • Sauerborn J, Buschmann H, Ghiasvand GK, Kogel K-H (2002) Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche cumana. Phytopathol 92:59–64

    CAS  Google Scholar 

  • Sauerborn J, Müller-Stöver D, Hershenhorn J (2007) The role of biological control in managing parasitic weeds. Crop Prot 26:246–254

    Google Scholar 

  • Schloss JV (1995) Recent advances in understanding the mechanism and inhibition of acetolactate synthase. In: Setter J (ed) Herbicides inhibiting branch chain amino acid biosynthesis. Springer Verlag, New York, pp 4–11

    Google Scholar 

  • Shabana YM, Müller-Stöver D, Sauerborn J (2003) Granular Pesta formulation of Fusarium oxysporum f. sp. orthoceras for biological control of sunflower broomrape: efficacy and shelf-life. Biol Control 26:189–201

    Google Scholar 

  • Sillero JC, del Moral J, Cubero JI, Rubiales D (2001) Búsqueda de tolerancia al glifosato en guisante como estrategia de control del jopo (Orbanche crenata). In: De Prado R, Jorrín JV (eds) Uso de Herbicidas en la agricultura del siglo XXI, Publ. Servicio Publicaciones Universidad de Córdoba, Spain, pp 677–684

    Google Scholar 

  • Sillero JC, Cubero JI, Fernández-Aparicio M, Rubiales D (2005a) Search for resistance to crenate broomrape (Orobanche crenata) in Lathyrus. Lathyrus Lathyrism Newsl 4:7–9

    Google Scholar 

  • Sillero JC, Moreno MT, Rubiales D (2005b) Sources of resistance to crenate broomrape in Vicia species. Plant Dis 89:22–27

    Google Scholar 

  • Singh BB (2002) Breeding cowpea varieties for resistance to Striga gesnerioides and Alectra vogelii. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA Press, Ibadan, Nigeria, pp 154–163

    Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner D (2004) Imidazolinone tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    Google Scholar 

  • Thorogood CJ, Rumsey FJ, Hiscock SJ (2009) Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants. Ann Bot 103:1005–1014

    PubMed  CAS  Google Scholar 

  • Timko MP, Gowda BS, Ouedraogo J, Ousmane B (2007) Molecular markers for analysis of resistance to Striga gesnerioides in cowpea. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control: towards ending the witch-hunt., World Scientific Publishing Co. Pte Ltd, Singapore pp. 115–128

  • Touré M, Olivier A, Ntare BR, St-Pierre CA (1996) The influence of sowing date and irrigation of cowpea on Striga gesnerioides emergence. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Proceedings of the Sixth International Symposium on Parasitic Weeds. Dirección General de Investigación Agraria, Córdoba, Spain, pp. 451–455

  • Touré M, Olivier A, Ntare BR, Lane JA, St-Pierre CA (1997) Inheritance of resistance to Striga gesnerioides biotypes from Mali and Niger in cowpea (Vigna unguiculata (L.) Walp.). Euphytica 94:273–278

    Google Scholar 

  • Valderrama MR, Román B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44:323–328

    CAS  Google Scholar 

  • Van Delft GJ, Graves JD, Fitter AH, Van Ast A (2000) Striga seed avoidance by deep planting and no-tillage in sorghum and maize. Int J Pest Manag 46:251–256

    Google Scholar 

  • Van Hezewijk MJ, Verkleij JAC (1996) The effect of nitrogenous compounds on in vitro germination of Orobanche crenata Forsk. Weed Res 36:395–404

    Google Scholar 

  • Vurro M, Boari A, Evidente A, Andolfi A, Zermane N (2009) Natural metabolites for parasitic weed management. Pest Manag Sci 65:566–571

    PubMed  CAS  Google Scholar 

  • Westwood JH (2000) Characterization of the Orobanche–Arabidopsis system for studying parasite–host interactions. Weed Sci 48:742–748

    CAS  Google Scholar 

  • Westwood JH, Foy CL (1999) Influence of nitrogen on germination and early development of broomrape (Orobanche spp.). Weed Sci 47:2–7

    CAS  Google Scholar 

  • Whitney PJ, Carsten C (1981) Chemotropic response of broomrape radicles to host root exudates. Ann Bot 48:919–921

    Google Scholar 

  • Xie X, Yoneyama K, Harada Y, Fusegi N, Yamada Y, Ito S, Yokota T, Takeuchi Y, Yoneyama K (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochem 70:211–215

    CAS  Google Scholar 

  • Yoder JI, Gunathilake P, Wu B, Tomilova N, Tomilov AA (2009) Engineering host resistance against parasitic weeds with RNA interference. Pest Manag Sci 65:460–466

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manag Sci 65:467–470

    PubMed  CAS  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201

    PubMed  CAS  Google Scholar 

  • Zehar N, Ingouff M, Bouya D, Fer A (2002) Possible involvement of gibberellins and ethylene in Orobanche ramosa germination. Weed Res 42:464–469

    Google Scholar 

  • Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broomrape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Techn 17:483–497

    Google Scholar 

  • Zwanenburg B, Thuring JWJF (1997) Synthesis of strigolactones and analogs: a molecular approach to the witchweed problem. Pure Appl Chem 69:651–654

    CAS  Google Scholar 

Download references

Acknowledgments

Support by project AGL2008-01239 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Rubiales.

About this article

Cite this article

Rubiales, D., Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 32, 433–449 (2012). https://doi.org/10.1007/s13593-011-0045-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0045-x

Keywords

Navigation