Advertisement

Benefits of low-frequency irrigation in citrus orchards

  • Iván García-Tejero
  • Víctor Hugo Durán-ZuazoEmail author
  • José Luis Muriel-Fernández
  • Gonzalo Martínez-García
  • Juan Antonio Jiménez-Bocanegra
Original Paper

Abstract

Citrus is a crop of major economic importance in Spain, cultivated during the dry season when irrigation is essential to guarantee yields of high quality. As water resources are progressively more insufficient, more effective water management in agriculture is crucial. Deficit irrigation in many agricultural crops has frequently proved to be an efficient tool for improving water-use efficiency. We hypothesise that, despite the effectiveness of deficit irrigation, the most suitable strategy in citrus orchards remains to be defined for Mediterranean environment. In this study, for the period from 2006 to 2008, a 12-year-old orange orchard, Citrus sinensis L. Osb. cv. Navelina, grafted onto Carrizo citrange, C. sinensis L. Osb. × Poncirus trifoliata L. Osb., were subjected under two deficit-irrigation strategies defined as follows: (1) low-frequency deficit irrigation applied according to the plant–water status, and (2) sustained-deficit irrigation with a water-stress ratio of 0.6, defined as the ratio of actual water-limited supply in this treatment related to the water supply of the control treatment. The control treatment was irrigated at 100% of ETC for the entire irrigation season (ETC: crop evapotranspiration). Midday stem–water potential (Ψ stem) and stomatal conductance (g S) were used to estimate the water status of the trees. The lowest Ψ stem and gS values were registered in the deficit-irrigation treatments with a seasonal pattern consistent with the irrigation dynamics applied in each case. Ψ stem and g S values significantly differed from those of the control trees. Although the integrated stress levels were similar in deficit-irrigation treatments, differences in yield and fruit quality were found, having a more positive response to low-frequency deficit irrigation with an increase of 25% in yield in comparison to the sustained-deficit irrigation treatment. Here, we thus demonstrate the significant differences in water productivity. Indeed, water productivity parameter not only depends on the amount of water, but also on the irrigation strategy applied, which promoted substantial water savings without significant impact on yield. The present study highlights that low-frequency deficit irrigation should be adopted as a most appropriate strategy for achieving sustainable water management and attains reasonable yields and improves quality in citrus orchards under Mediterranean semiarid climate.

Keywords

Sustained deficit irrigation Low-frequency deficit irrigation Integrated stem–water potential Integrated stomatal conductance Yield Fruit quality 

Notes

Acknowledgements

Part of the research work leading to this publication was sponsored by the following research project “Strategies for the improvement irrigation management under climatic change. Integration of modelling techniques and deficit irrigation strategies” (RTA2008-00006-CO2-02) granted by INIA, Spain, and cofinanced by FEDER funds (European Union). The authors also thank to J. García-Baquero and M.A. Fernández-Ayala for field data collection and laboratory analyses. The author I. García-Tejero is in receipt of research fellowships from INIA (PRE-2007).

References

  1. Ali MH, Hoque MR, Hassan AA, Khair A (2007) Effects of deficit irrigation on yield, water productivity, and economic returns of wheat. Agric Water Manage 92:151–161. doi: 10.1016/j.agwat.2007.05.010 CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration (Guidelines for computing crop water requirements). FAO Irrigation and Drainage, paper 56. FAO, RomeGoogle Scholar
  3. Anapalli SS, Ahuja LR, Ma L, Timlin DJ, Stockle CO, Boote KJ, Hoogenboom G (2008) Current water deficit stress simulations in selected agricultural system simulation models. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. Madison, WI, Am Soc Agr, Crop Sci Soc Am, Soil Sci Soc Am, pp 1–38Google Scholar
  4. Barry GH, Castle WS, Davies F (2004) Rootstocks, and plant water relations affect sugar accumulation of citrus fruit via osmotic adjustment. J Am Soc Hortic Sci 129:881–889Google Scholar
  5. Bielorai H (1982) The effect of partial wetting of the root zone on yield and water use efficiency in drip and sprinkler mature grapefruit grove. Irrig Sci 3:89–100. doi: 10.1007/BF00264852 CrossRefGoogle Scholar
  6. Boletín Oficial de la Junta de Andalucía (BOJA) núm. 113. Orden de 21 de septiembre de 2000 por la que se aprueba el reglamento específico de Producción Integrada de Cítricos. Consejería de Agricultura y Pesca. Sevilla. 30 de septiembre de 2000. 15287–15297 ppGoogle Scholar
  7. Castel JR (1991) El riego de los cítricos. Hortifruticultura 5:41–52Google Scholar
  8. De Swaef T, Steppe K, Lemeur R (2009) Determining reference values for stem water potential and maximum daily shrinkage in young apple trees based on plant responses to water deficit. Agric Water Manage 96:541–550. doi: 10.1016/j.agwat.2008.09.013 CrossRefGoogle Scholar
  9. Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO Irrigation and Drainage paper no. 24. FAO, RomeGoogle Scholar
  10. Doorenbos J, Kassam A (1979) Yield response to water. FAO. Irrigation and Drainage paper no. 33. Rome, ItalyGoogle Scholar
  11. García-Tejero I, Jiménez JA, Reyes MC, Carmona A, Pérez R, Muriel JL (2008) Aplicación de caudales limitados de agua en plantaciones de cítricos del valle del Guadalquivir. Frutic Prof 173:5–17Google Scholar
  12. García-Tejero I, Jiménez-Bocanegra JA, Martínez G, Romero R, Durán-Zuazo VH, Muriel-Fernández JL (2010a) Positive impact of regulated deficit irrigation on yield and fruit-quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. Salustiano]. Agric Water Manage 97:614–622. doi: 10.1016/j.agwat.2009.12.005 CrossRefGoogle Scholar
  13. García-Tejero I, Romero-Vicente R, Jiménez-Bocanegra JA, Martínez-García G, Durán-Zuazo VH, Muriel-Fernández JL (2010b) Response of citrus trees to déficit irrigation during different phenological periods in relation to yield, fruit quality and water productivity. Agric Water Manage 97:689–699. doi: 10.1016/j.agwat.2009.12.012 CrossRefGoogle Scholar
  14. Ginestar C, Castel JR (1996) Responses of young clementine citrus trees to water stress during different phenological periods. J Hortic Sci 71:551–559Google Scholar
  15. Girona J, Marsal J, Mata M, Arbonés A, Mata A (2002) The combined effect of fruit load and water stress in different peach fruit growth stages (Prunus persica L.). Acta Hortic 584:149–152Google Scholar
  16. Girona J, Mata M, Arabonés A, Alegre S, Rufat J (2003) Peach tree response to single and combined regulated deficit irrigation regimes under shallow soils. J Am Soc Hortic Sci 128:432–440Google Scholar
  17. Girona J, Mata M, Del Campo J, Arbones A, Bartra E, Marsal J (2006) The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig Sci 24:115–127. doi: 10.1007/s00271-005-0015-7 CrossRefGoogle Scholar
  18. Goldhamer DA, Viveros M, Salinas M (2006) Regulated deficit irrigation in almonds: effects of variations in applied water and stress timing on yield and yield components. Irrig Sci 24:101–114. doi: 10.1007/s00271-005-0014-8 CrossRefGoogle Scholar
  19. González AP, Castel JR (1999) Effects of regulated deficit irrigation on “Clementina de Nules” citrus trees. I. Yield and fruit quality effect. J Am Soc Hortic Sci 74:706–713Google Scholar
  20. González AP, Castel JR (2000) Effects of regulated deficit irrigation on “Clementina de Nules” Citrus trees. II. Vegetative growth. J Am Soc Hortic Sci 75:388–392Google Scholar
  21. Hockema BR, Etexeberria E (2001) Metabolic contributors to drought-enhanced accumulation of sugars and acids in oranges. J Am Soc Hortic Sci 126:599–605Google Scholar
  22. Hsiao TC (1973) Plant response to water stress. Ann Rev Plant Physiol 24:519–570CrossRefGoogle Scholar
  23. Hutton RJ, Landsberg JJ, Sutton BG (2007) Timing irrigation to suit citrus phenology: a means of reducing water use without compromising fruit yield and quality? Aust J Exp Agric 47:71–80. doi: 10.1071/EA05233 CrossRefGoogle Scholar
  24. Iglesias A, Harley M, Hodgson N, Horrocks L, Moneo M, Webb J (2007) Adaptation to climate change in the agricultural sector. Report to European Commission Directorate –General for Agriculture and Rural Development. ED05334Google Scholar
  25. Jalota SK, Sood A, Chahal ABS, Choudhury BU (2006) Crop water productivity of cotton (Gossypum hirsutum L.)-wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation. Agric Water Manage 84:137–146. doi: 10.1016/j.agwat.2006.02.003 CrossRefGoogle Scholar
  26. Kang S, Hu X, Goodwin I, Jerie P (2002) Soil water distribution, water use and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Acta Hortic 92:277–291CrossRefGoogle Scholar
  27. Muriel JL, Jiménez JA, García I, Vaquero I (2006) Relaciones hídricas en una plantación de naranjos (Citrus sinensis, L. Cv Navelino) bajo estrategias de riego deficitario mantenido. In: Morales MD, Jiménez PMS (eds) VIII Simposium Hispano Portugués de Relaciones Hídricas en las Plantas. 17–21 June 2006, at Puerto de la Cruz (Tenerife, Spain). 139–142 ppGoogle Scholar
  28. Myers BJ (1988) Water stress integral. A link between short term stress and long term growth. Tree Physiol 4:315–323. doi: 10.1093/treephys/4.4.315 PubMedGoogle Scholar
  29. Naor A, Cohen S (2003) The sensitivity and variability of maximum trunk shrinkage, midday stem water potential and transpiration rate in response to withholding of irrigation in field-grown apple trees. Hortic Sci 38:547–551Google Scholar
  30. Naor A, Klein I, Doron I (1995) Stem water potential and apple fruit size. J Am Soc Hortic Sci 120:577–582Google Scholar
  31. Naor A, Klein I, Doron I, Gal Y, Ben-David Z, Bravdo B (1997) The effect of irrigation and crop load on stem water potential and apple fruit size. J Hortic Sci 72:765–771Google Scholar
  32. Naor A, Klein I, Huppert H, Grinblat Y, Peres M (1999) Irrigation and crop load interactions in relation to nectarine yield, fruit size distribution and water potentials. J Am Soc Hortic Sci 124:189–193Google Scholar
  33. Naor A, Peres M, Greenblat Y, Doron I, Gal Y, Stern RA (2000) Irrigation and crop load interactions in relation to pear yield and fruit size distribution. J Hortic Sci Biotechnol 75:555–561Google Scholar
  34. Ortuño MF, García OY, Conejero W, Ruiz SMC, Alarcón JJ, Torrecillas A (2006) Stem and leaf water potentials, gas exchange, sap flow and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 20:1–8. doi: 10.1007/s00468-005-0004-8 CrossRefGoogle Scholar
  35. Paly M, Zell A (2009) Optimal irrigation scheduling with evolutionary algorithms. In: Giacobini M, et al (eds) EvoWorkshps, LNCS 5484, 141–151Google Scholar
  36. Pérez-Pérez JG, Robles JM, Botía P (2009) Influence of deficit irrigation in phase III of fruit growth on fruit quality in “Lane late” sweet orange. Agric Water Manage 96:969–979. doi: 10.1016/j.agwat.2009.01.008 CrossRefGoogle Scholar
  37. Rodríguez DJA, Wetheread EK, Knox JW, Camacho E (2007) Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg Environ Change 7:149–159. doi: 10.1007/s10113-007-0035-3 CrossRefGoogle Scholar
  38. Romero P, Navarro JM, Pérez PJG, García SF, Gómez GA, Porras I, Martínez V, Botía P (2006) Deficit irrigation and rootstock: their effects on water relations vegetative development, yield, fruit quality, and mineral nutrition of Clemenules mandarin. Tree Physiol 26:1537–1548. doi: 10.1093/treephys/26.12.1537 PubMedGoogle Scholar
  39. Sánchez BMJ, Torrecillas A, León A, Del Amor F (1989) The effect of different irrigation treatments on yield and quality of Verna lemon. Plant Soil 120:299–302. doi: 10.1007/BF02377080 CrossRefGoogle Scholar
  40. Scholander PF, Hammel HT, Hemingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential of leaves of mangrove and some other plants. Proc Natl Acad Sci USA 52:119–125PubMedCrossRefGoogle Scholar
  41. Sepaskhah AR, Kashefipour SM (1994) Relationships between leaf water potential, CWSI, yield and fruit quality of sweet lime under drip irrigation. Agric Water Manage 25:13–22. doi: 10.1016/0378-3774(94)90049-3 CrossRefGoogle Scholar
  42. Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. USDA-Natural Resources Conservation Service, Washington DCGoogle Scholar
  43. Spreer W, Nagle M, Neidhart S, Carle R, Ongpraset S, Müller J (2007) Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L. cv. “Chok Anan”). Agric Water Manage 88:173–180. doi: 10.1016/j.agwat.2006.10.012 CrossRefGoogle Scholar
  44. Sterk G, Stein A (1997) Mapping wind-blown mass transport by modelling variability in space and time. Soil Sci Soc Am J 61:232–239. doi: 10.2136/sssaj1997.03615995006100010032x CrossRefGoogle Scholar
  45. Treeby MT, Henriod RE, Bevington KB, Milne DJ, Storey R (2007) Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality. Agric Water Manage 91:24–32. doi: 10.1016/j.agwat.2007.04.002 CrossRefGoogle Scholar
  46. Turner NC (1988) Measurements of plant water status by pressure chamber technique. Irrig Sci 9:289–308. doi: 10.1007/BF00296704 CrossRefGoogle Scholar
  47. Van Hoojdonk BM, Dorji K, Behboudian MH (2004) Responses of ‘Pacific Rose’ apple to partial rootzone drying and deficit irrigation. Europ J Hortic Sci 69:104–110Google Scholar
  48. Verasan V, Phillips RE (1978) Effects of soil water stress on growth and nutrient accumulation in corn. Agron J 70:613–618. doi: 10.2134/agronj1978.00021962007000040021x CrossRefGoogle Scholar
  49. Verreynne JS, Rabe F, Theron KI (2001) The effect of combined deficit irrigation and summer trunk girdling on the internal fruit quality of “Marisol” Clementines. Sci Hortic 91:25–37. doi: 10.1016/S0304-4238(01)00233-3 CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Iván García-Tejero
    • 1
  • Víctor Hugo Durán-Zuazo
    • 1
    Email author
  • José Luis Muriel-Fernández
    • 1
  • Gonzalo Martínez-García
    • 1
  • Juan Antonio Jiménez-Bocanegra
    • 1
  1. 1.IFAPA Centro Las Torres-TomejilAlcalá del RíoSpain

Personalised recommendations