Skip to main content

Advertisement

Log in

Modelling pesticides transfer to surface water at the catchment scale: a multi-criteria analysis

  • Review Paper
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The demand for operational tools at a catchment scale is growing to assess both the sustainability of agricultural practices and the efficiency of mitigation measures on pesticide transfer to surface water. Here a literature review of 286 investigations highlights the large number of indicators and hydrochemical models developed at the catchment scale. Given this large number of indicators and models, the choice is difficult for potential users. Therefore, this article proposes a multi-criteria analysis applied to ten existing tools including physically based and conceptual models, indicators and multi-agent systems. We found the following major points: (1) Indicators and conceptual models are the most popular approaches to assess the transfer of pesticides to surface water at the catchment scale due to a trade-off between environmental relevance and adaptation to user’s needs. (2) The latest indicators developed are inferred from the results of conceptual or physically based models to combine the strengths of each approach. (3) Only a handful of physically based models have addressed both flow and pesticide transport at the catchment as affected by the internal heterogeneity of the system. However, it is only physically based models that can simulate the impact of changes to the catchment. Physically based models integrate feedbacks between hydrological and chemical processes not possible from conceptual models or indicators alone. (4) The ability of models to assess the pesticide loads both in the dissolved and particulate phases is a key issue not properly addressed by many indicators or models. A key way forward is the integration of erosion processes with the fate of pesticide adsorbed to these particles. (5) At the catchment, the hydrological connectivity is perhaps the primary hydrological variable required to correctly assess rapid flow processes as surface runoff and associated pesticide transfer. This in turn implies using tools that explicitly represent the connectedness of surface and/or sub-surface water pathways including mitigation measures to correctly assess the risk of pesticide transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alletto L, Coquet Y, Benoit P, Heddadj J, Barriuso E (2010) Tillage management effects on pesticide fate in soils. A review. Agron Sustain Dev 30:367–400. doi:10.1051/agro/2009018

    CAS  Google Scholar 

  • Alvarez-Benedi J, Munoz-Carpena R, Vanclooster M (2004) Modeling as a tool for the characterization of soil water and chemical fate and transport. In: Alvarez-Benedi J (ed) Soil water solute process characterization: an integrated approach. CRC, Hoboken, pp 87–117

    Google Scholar 

  • Ambroise B (2004) Variable “active” versus “contributing” areas or periods: a necessary distinction. HP-Today Invited Commentary. Hydrol Process 18(6):1149–1155. doi:10.1002/hyp.5536

    Google Scholar 

  • Andreu V, Picó Y (2004) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. TrAC Trends Anal Chem 23(10–11):772–789. doi:10.1016/j.trac.2004.07.008

    CAS  Google Scholar 

  • Arabi M, Govindaraju RS, Hantush MMA (2007) Probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. J Hydrol 333(2–4):459–471. doi:10.1016/j.jhydrol.2006.09.012

    Google Scholar 

  • Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agr Ecosyst Environ 123(4):247–260. doi:10.1016/j.agee.2007.07.011

    CAS  Google Scholar 

  • Aurousseau P, Gascuel-Odoux C, Squividant H, Trepos R, Tortrat F, Cordier MO (2009) A plot drainage network as a conceptual tool for the spatial representation of surface flow pathways in agricultural catchments. Comput geosci 35:276–288. doi:10.1016/j.cageo.2008.09.003

    CAS  Google Scholar 

  • Balderacchi M, Di Guardo A, Vischetti C, Trevisan M (2008) The effect of crop rotation on pesticide leaching in a regional pesticide risk assessment. Environ Sci Technol 42:8000–8006. doi:10.1021/es801287w

    PubMed  CAS  Google Scholar 

  • Barreteau O, Cernesson F (2003) Orb case study (Phylou model) in report of workpackage 5 of the Firma European Project. In: Warwick C (ed). University of Oxford, England, pp 55–59

  • Bedos C, Rousseau-Djabri MF, Gabrielle B, Flura D, Durand B, Barriuso E, Cellier P (2006) Measurement of trifluralin volatilization in the field: relation to soil residue and effect of soil incorporation. Environ Pollut 144(3):958–966. doi:10.1016/j.envpol.2006.01.043

    PubMed  CAS  Google Scholar 

  • Bedos C, Rousseau-Djabri MF, Flura D, Masson S, Barriuso E, Cellier P (2002) Rate of pesticide volatilization from soil: an experimental approach with a wind tunnel system applied to trifluralin. Atmos Environ 36(39–40):5917–5925. doi:10.1016/S1352-2310(02)00775-6

    CAS  Google Scholar 

  • Beven KJ, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298. doi:10.1002/hyp.3360060305

    Google Scholar 

  • Beven KJ (2002) Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrol Process 16(2):189–206. doi:10.1002/hyp.343

    Google Scholar 

  • Beven KJ (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36. doi:10.1016/j.jhydrol.2005.07.007

    Google Scholar 

  • Blanchoud H, Moreau-Guigon E, Farrugia F, Chevreuil M, Mouchel JM (2007) Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed. Sci Total Environ 375(1–3):168–179. doi:10.1016/j.scitotenv.2006.12.009

    PubMed  CAS  Google Scholar 

  • Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci Total Environ 369(1–3):163–177. doi:10.1016/j.scitotenv.2006.05.019

    PubMed  CAS  Google Scholar 

  • Bockstaller C, Girardin P (2003) How to validate environmental indicators? Agr Syst 76(2):639–653. doi:10.1016/S0308-521X(02)00053-7

    Google Scholar 

  • Borah D, Bera M (2004). Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Trans ASAE 47(3): 789–804.

    CAS  Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64(4):441–456. doi:10.1002/ps.1512

    PubMed  CAS  Google Scholar 

  • Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176(3–4):313–332. doi:10.1016/j.ecolmodel.2004.01.011

    Google Scholar 

  • Brady JA, Wallender WW, Werner I, Mostafazadeh FB, Zalom FG, Oliver MN, Wilson BW, Mata MM, Henderson JD, Deanovic LA, Upadhaya S (2006) Pesticide runoff from orchard floors in Davis, California, USA: a comparative analysis of diazinon and esfenvalerate. Agr Ecosyst Environ 115(1–4):56–68. doi:10.1016/j.agee.2005.12.009

    CAS  Google Scholar 

  • Brown JD (2010) Prospects for the open treatment of uncertainty in environmental research. Prog Phys Geogr 34(1):75–100. doi:10.1177/0309133309357000

    Google Scholar 

  • Campbell CG, Garrido F (2004) Spatial and temporal variability of soil processes: implication for method selection and characterization studies. In: Alvarez-Benedi J (ed) Soil water solute process characterization: an integrated approach. CRC, Hoboken, pp 59–80

    Google Scholar 

  • Colin F, Puech C, de Marsily G (2000) Relations between triazine flux, catchment topography and distance between maize fields and the drainage network. J Hydrol 236:139–152. doi:10.1016/S0022-1694(00)00288-2

    Google Scholar 

  • Corwin DL, Loague K (2004) Multidisciplinarity approach for assessing subsurface non-point source pollution. In: Alvarez-Benedi J (ed) Soil water solute process characterization: an integrated approach. CRC, Hoboken, pp 1–46

    Google Scholar 

  • Christiansen JS, Thorsen M, Clausen T, Hansen S, Refsgaard JC (2004) Modelling of macropore flow and transport processes at catchment scale. J Hydrol 299:136–158. doi:10.1016/j.jhydrol.2003.10.018

    CAS  Google Scholar 

  • De Bruyn B (2004) Study of water vulnerability to phytosanitary products: environmental indicator and mechanistic model, with a view of improving the management of the Leysse catchment area (Savoie, France). Ph.D. report, LTHE, Université Joseph Fourier, Grenoble, France (in French)

  • De Bruyn B, Freissinet C, Vauclin M (2006) An indice for pesticide vulnerability of surface waters: assessment on the Leysse catchment (Savoie). Houille Blanche-Revue Internationale de l’Eau 2:106–112. doi:10.1051/lhb:200602014

    Google Scholar 

  • Delphin JE, Chapot JY (2006) Leaching of atrazine, metolachlor and diuron in the field in relation to their injection depth into a silt loam soil. Chemosphere 64(11):1862–1869. doi:10.1016/j.chemosphere.2006.01.049

    PubMed  CAS  Google Scholar 

  • Devillers J, Farret R, Girardin P, Rivière JL, Soulas G (2005) Indicateurs pour évaluer les risques liés à l'utilisation des pesticides. TEC&DOC, Paris

    Google Scholar 

  • Dordio AV, Teimão J, Ramalho I, Carvalho AJP, Estêvão Candeias AJ (2007) Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems. Sci Total Environ 380(1–3):237–246. doi:10.1016/j.scitotenv.2007.02.015

    PubMed  CAS  Google Scholar 

  • Dubus IG, Brown CD, Beulke S (2003) Sources of uncertainty in pesticide fate modelling. Sci Total Environ 317(1–3):53–72. doi:10.1016/S0048-9697(03)00362-0

    PubMed  CAS  Google Scholar 

  • Dubus IG, Janssen PHM (2003) Issues of replicability in Monte Carlo modeling: a case study with a pesticide leaching model. Environ Toxicol Chem 22(12):3081–3087. doi:10.1897/02-470

    PubMed  CAS  Google Scholar 

  • Dubus IG, Surdyk N (2006) State-of-the-art review on pesticide fate models and environmental indicators. Report DL#4 of the FP6 EU-funded FOOTPRINT project: 39 p. Available from www.eu-footprint.org

  • Dubus IG, Azimonti G, Bach M, Barriuso E, Bidoglio G, Bouraoui F, Fialkiewicz W, Fowler HJ, Francois O, Hojberg A, Hollis JM, Jarvis NJ, Kajewski I, Kjaer J, Lewis K, Lobnik F, Lolos P, Nolan BT, Real B, Reichenberger S, Stenemo F, Suhadolc M, Surdyk N, Vavoulidou-Theodorou E (2007) Developing tools for pesticide risk assessment and management at three different scales in Europe: the FOOTPRINT project. In: Del Re AAM, Carpi E, Fragoulis G, Trevisan M (eds) Symposium pesticide chemistry—environment fate and ecological effects, XIIIth edn. La Goliardica Pavese, Piacenza, pp 966–973

    Google Scholar 

  • Du Preez LH, van Rensburg PJJ, Jooste AM, Carr JA, Giesy JP, Gross TS, Kendall RJ, Smith EE, Van Der Kraak G, Solomon KR (2005) Seasonal exposures to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa. Environ Pollut 135(1):131–141. doi:10.1016/j.envpol.2004.09.019

    PubMed  Google Scholar 

  • Durand P, Gascuel-Odoux C, Cordier MO (2002) Parameterisation of hydrological models: a review and lessons learned from studies of an agricultural catchment (Naizin, France). Agronomie 22(2):217–228. doi:10.1051/agro:2002001

    Google Scholar 

  • Faria MS, Nogueira AJA, Soares AMVM (2007) The use of Chironomus riparius larvae to assess effects of pesticides from rice fields in adjacent freshwater ecosystems. Ecotoxicol Environ Saf 67(2):218–226. doi:10.1016/j.ecoenv.2006.11.018

    PubMed  CAS  Google Scholar 

  • Fiener P, Auerswald K, Weigand S (2005) Managing erosion and water quality in agricultural watersheds by small detention ponds. Agr Ecosyst Environ 110(3–4):132–142. doi:10.1016/j.agee.2005.03.012

    Google Scholar 

  • Finizio A, Villa S (2002) Environmental risk assessment for pesticides: a tool for decision making. Environ Impact Asses 22(3):235–248. doi:10.1016/S0195-9255(02)00002-1

    Google Scholar 

  • Frewer L, Fischer A, van den Brink P, Brock TCM, Brown CD, Byrne P, Crocker J, Görlitz G, Hart A, Scholderer J, Solomon K (2008) Optimising the communication of probabilistic risk assessments to end-users and decisions-makers. Hum Ecol Risk Assess 14:166–178. doi:10.1080/10807030701790355

    Google Scholar 

  • Frey MP, Schneider MK, Dietzel A, Reichert P, Stamm C (2009) Predicting critical source areas for diffuse herbicide losses to surface waters: role of connectivity and boundary conditions. J Hydrol 365(1–2):23–36. doi:10.1016/j.jhydrol.2008.11.015

    CAS  Google Scholar 

  • Gascuel-Odoux C, Aurousseau P, Cordier MO, Durand P, Garcia F, Masson V, Salmon-Monviola J, Tortrat F, Trepos R (2009) A decision-oriented model to evaluate the effect of land use and agricultural management on herbicide contamination in stream water. Environ Model Softw 24:1433–1446. doi:10.1016/j.envsoft.2009.06.002

    Google Scholar 

  • Gavrilescu M (2005) Review: fate of pesticides in the environment and its bioremediation. Eng Life Sci 5(6):497–526. doi:10.1002/elsc.200520098

    CAS  Google Scholar 

  • Gil Y, Sinfort C (2005) Emission of pesticides to the air during sprayer application: a bibliographic review. Atmos Environ 39(28):5183–5193. doi:10.1016/j.atmosenv.2005.05.019

    CAS  Google Scholar 

  • Gooddy DC, Chilton PJ, Harrison I (2002) A field study to assess the degradation and transport of diuron and its metabolites in a calcareous soil. Sci Total Environ 297(1–3):67–83. doi:10.1016/S0048-9697(02)00079-7

    PubMed  CAS  Google Scholar 

  • Gras R, Benoit M, Deffontaines JP, Duru M, Lafarge M, Langlet A, Osty PL (1989) Le fait technique en agronomie. Activité agricole, concepts et méthodes d’étude. Institut National de la Recherche Agronomique, L’Harmattan, Paris

    Google Scholar 

  • Gregoire C (2006) Non-point source pollution in small vineyard catchments: characterisation and modelling of transfer processes. Authorization to manage research report (HDR in French). Ecole Nationale du Génie de l’Eau et de l’Environnement de Strasbourg, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, Schütz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems: an interdisciplinary approach in the EU ArtWET project. Environmental Chem Lett 7(3):205–231. doi:10.1007/s10311-008-0167-9

    CAS  Google Scholar 

  • Gregoire C, Payraudeau S, Domange N (2010) Use and fate of 17 pesticides at the catchment scale. Int J Environ Anal Chem 90(3–6):406–420. doi:10.1080/03067310903131230

    CAS  Google Scholar 

  • Halberg N, Verschuur G, Goodlass G (2005) Farm level environmental indicators; are they useful?: an overview of green accounting systems for European farms. Agr Ecosyst Environ 105(1–2):195–212. doi:10.1016/j.agee.2004.04.003

    Google Scholar 

  • Hamilton SF, Sunding DL, Zilberman D (2003) Public goods and the value of product quality regulations: the case of food safety. J Public Econ 87(3–4):799–817. doi:10.1016/S0047-2727(01)00103-7

    Google Scholar 

  • Henriksen HJ, Rasmussen P, Brandt G, von Bülow D, Jensen FV (2007) Public participation modelling using Bayesian networks in management of groundwater contamination. Environ Modell Softw 22(8):1101–1113. doi:10.1016/j.envsoft.2006.01.008

    Google Scholar 

  • Heuvelink GBM, Burgers SLGE, Tiktak A, Van Den Berg F (2010) Uncertainty and stochastic sensitivity analysis of the GeoPEARL pesticide leaching model. Geoderma 155(3–4):186–192. doi:10.1016/j.geoderma.2009.07.004

    CAS  Google Scholar 

  • Holvoet K, Seuntjens P, Vanrolleghem P (2007) Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol Model 209(1):53–64. doi:10.1016/j.ecolmodel.2007.07.030

    CAS  Google Scholar 

  • Holvoet K, van Griensven A, Gevaert V, Seuntjens P, Vanrolleghem PA (2008) Modifications to the SWAT code for modelling direct esticide losses. Environ Modell Softw 23(1):72–81. doi:10.1016/j.envsoft.2007.05.002

    Google Scholar 

  • Holvoet K, van Griensven A, Seuntjens P, Vanrolleghem PA (2005) Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Phys Chem Earth 30(8–10):518–526. doi:10.1016/j.pce.2005.07.006

    Google Scholar 

  • Houdart M (2005) Spatial organisation of agricultural activities and water pollution by pesticides Modelling in Capot’s watershed, Martinique (French West Indies). Ph.D. Université des Antilles et de la Guyane, Fort de France, Martinique, France (in French). Available from http://www.cormas.cirad.fr/pdf/theseHoudart.pdf

  • Houdart M, Tixier P, Lassoudière SF (2009) Assessing pesticide pollution risk: from field to watershed. Agron Sustain Dev 29:321–327. doi:10.1051/agro:2008042

    Google Scholar 

  • IISD (1997) Assessing sustainable development. International Institute for Sustainable Development, Winnipeg

    Google Scholar 

  • Jantunen APK, Trevisan M, Capri E (2004) Computer models for characterizing the fate of chemicals in soil: pesticide leaching models and their practical applications. In: Alvarez-Benedi J (ed) Soil water solute process characterization: an integrated approach. CRC, Hoboken, pp 715–751

    Google Scholar 

  • Jetten V, Govers G, Hessel R (2003) Erosion models: quality of spatial predictions. Hydrol Process 17(5):887–900. doi:10.1002/hyp.1168

    Google Scholar 

  • Joannon A, Papy F, Martin P, Souchère V (2005) Planning work constraints within farms to reduce runoff at catchment level. Agr Ecosyst Environ 111(1–4):13–20. doi:10.1016/j.agee.2005.04.021

    Google Scholar 

  • Joyce BA, Wallender WW, Mailapalli DR (2010) Application of pesticide transport model for simulating diazinon runoff in California’s central valley. J Hydrol 395(1–2):79–90. doi:10.1016/j.jhydrol.2010.10.017

    CAS  Google Scholar 

  • Kannan N, White SM, Worrall F, Whelan MJ (2007) Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. J Hydrol 332(3–4):456–466. doi:10.1016/j.jhydrol.2006.08.001

    Google Scholar 

  • Klemes V (1986) Dilettantism in hydrology: transition or destiny? Water Resour Res 22(9):177–188. doi:10.1029/WR022i09Sp0177S

    Google Scholar 

  • Köhne JM, Köhne S, Simunek J (2009) A review of model applications for structured soils: b) pesticides transport. J Contam Hydrol 104:36–60. doi:10.1016/j.jconhyd.2008.10.003

    PubMed  Google Scholar 

  • Kolditz O, Du Y, Bürger C, Delfs J, Kuntz D, Beinhorn M, Hess M, Wang W, van der Grift B, te Stroet C (2007) Development of a regional hydrologic soil model and application to the Beerze–Reusel drainage basin. Environ Pollut 148(3):855–866. doi:10.1016/j.envpol.2007.01.046

    PubMed  CAS  Google Scholar 

  • Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83. doi:10.1016/0309-1708(92)90033-X

    Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141(3):555–570. doi:10.1016/j.envpol.2005.07.024

    PubMed  CAS  Google Scholar 

  • Lagacherie P, Rabotin M, Colin F, Moussa R, Voltz M (2010) Geo-MHYDAS: a landscape discretization tool for distributed hydrological modeling of cultivated areas. Comput Geol 36(8):1021–1032. doi:10.1016/j.cageo.2009.12.005

    Google Scholar 

  • Lecomte V (1999) Movement of agricultural chemicals through runoff and erosion from the cultivated plot to the catchment. Ph.D. ENGREF, Paris, France (in French)

  • Lehmann P, McGrath G, Tromp-van Meerveld HJ, McDonnell JJ (2007) Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity. Hydrol Earth Syst Sci 11:1047–1063. doi:10.5194/hess-11-1047-2007

    Google Scholar 

  • Leu C, Singer H, Stamm C, Müller SR, Schwarzenbach RP (2004a) Simultaneous assessment of sources, processes and factors influencing herbicide losses to surface waters in a small agricultural catchment. Environ Sci Technol 38(14):3827–3834. doi:10.1021/es0499602

    PubMed  CAS  Google Scholar 

  • Leu C, Singer H, Stamm C, Müller SR, Schwarzenbach RP (2004b) Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ Sci Technol 38(14):3835–3841. doi:10.1021/es0499593

    PubMed  CAS  Google Scholar 

  • Louchart X, Voltz M, Andrieux P, Moussa R (2001) Herbicides runoff at field and watershed scales in a Mediterranean vineyard area. J Environ Qual 30(3):982–991. doi:10.2134/jeq2001.303982x

    PubMed  CAS  Google Scholar 

  • Luo YZ, Zhang MH (2009) A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed. J Environ Qual 38(2):664–674. doi:10.2134/jeq2008.0216

    PubMed  CAS  Google Scholar 

  • Madier S (2007) From the measurement to the modelling of transfers of pesticides on the catchment scale: quantification of the uncertainties and definition of sampling strategies. Ph.D. Agro Paris tech, Paris, France (in French). Available from http://www-engees.u-strasbg.fr/fileadmin/user_upload/pdf/cevh/Madier_THESE.pdf

  • Maison P (2000) A hydrological model of non-point pollution behaviour in watershed-simplified mechanistic approach of the non saturated zone. Ph.D. report of Institut national polytechnic de Toulouse, Toulouse, France (in French). Available from http://www.infotheque.info/ressource/6039.html

  • McGrath GS, Hinz C, Sivapalan M (2008) Modeling the effect of rainfall intermittency on the variability of solute persistence at the soil surface. Water Resour Res 44(9):W09432. doi:0.1029/2007WR006652

    Google Scholar 

  • McGrath GS, Hinz C, Sivapalan M (2009) A preferential flow leaching index. Water Resour Res 45:W11405. doi:10.1029/2008WR007265

    Google Scholar 

  • McGrath GS, Hinz C, Sivapalan M, Dressel J, Putz T, Vereecken H (2010) Identifying a rainfall event threshold triggering herbicide leaching by preferential flow. Water Resour Res 46:W02513. doi:10.1029/2008WR007506

    Google Scholar 

  • McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from computer code. Technometrics 21:239–245. doi:10.2307/1268522

    Google Scholar 

  • Mitchell G, May A, McDonald A (1995) PICABEU: a methodological framework for the development of indicators of sustainable development. Int J Sustain Dev World Ecol 2:104–123. doi:10.1080/13504509509469893

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, New York

    Google Scholar 

  • Moore MT, Rodgers JH, Smith S, Cooper CM (2001) Mitigation of metolachlor-associated agricultural runoff using constructed wetlands in Mississippi, USA. Agr Ecosyst Environ 84(2):169–176. doi:10.1016/S0167-8809(00)00205-X

    CAS  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S, Farris JL, Drouillard KG, Schulz R (2006) Influence of vegetation in mitigation of methyl parathion runoff. Environ Pollut 142(2):288–294. doi:10.1016/j.envpol.2005.10.009

    PubMed  CAS  Google Scholar 

  • Moreby SJ, Southway SE (1999) Influence of autumn applied herbicides on summer and autumn food available to birds in winter wheat fields in southern England. Agr Ecosyst Environ 72(3):285–297. doi:10.1016/S0167-8809(99)00007-9

    Google Scholar 

  • Mouvet C, Albrechtsen HJ, Baran N, Chen T, Clausen L, Darsy C, Desbionne S, Douguet J-M, Dubus IG, Esposito A, Fialkiewicz W, Gutierrez A, Haverkamp R, Herbst M, Howles D, Jarvis NJ, Jørgensen PR, Larsbo M, Meiwirth K, Mermoud A, Morvan X, Normand B, O’Connor M, Ritsema C, Roessle S, Roulier S, Soutter M, Stenemo F, Thiéry D, Trevisan M, Vachaud G, Vereecken H, Vischetti C (2004) PEGASE. Pesticides in European Groundwaters: detailed study of representative aquifers and simulation of possible evolution scenarios. In: Dubus IG, Mouvet C (eds) Final report of the European project #EVK1-CT1990-00028. BRGM/RP-52897-FR, 358 p. doi:10.1016/j.agee.2006.08.016

  • Müller K, Magesan GN, Bolan NS (2007) A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agr Ecosyst Environ 120(2–4):93–116

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10(3):282–290. doi:10.1016/0022-1694(70)90255-6

    Google Scholar 

  • Ocampo CJ, Sivapalan M, Oldham C (2006) Hydrological connectivity of upland-riparian zones in agricultural catchments: implications for runoff generation and nitrate transport. J Hydrol 331(3–4):643–658. doi:10.1016/j.jhydrol.2006.06.010

    CAS  Google Scholar 

  • Ohliger R, Schulz R (2010) Water body and riparian buffer strip characteristics in a vineyard area to support aquatic pesticide exposure assessment. Sci Total Environ 408(22):5405–5413. doi:10.1016/j.scitotenv.2010.08.025

    PubMed  CAS  Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation and confirmation of numerical models in the Earth sciences. Sciences 263:641–646. doi:10.1126/science.263.5147.641

    CAS  Google Scholar 

  • Pavlis M, Cummins E, McDonnell K (2010) Groundwater vulnerability assessment of plant protection products: a review. Hum Ecol Risk Assess 16(3):621–650. doi:10.1080/10807031003788881

    CAS  Google Scholar 

  • Payraudeau S, van der Werf HMG (2005) Environmental impact assessment for a farming region: a review of methods. Agr Ecosyst Environ 107:1–19. doi:10.1016/j.agee.2004.12.012

    Google Scholar 

  • Pell M, Stenström J (2004) Evaluation and characterization of soil microbiological Processes. In: Alvarez-Benedi J (ed) Soil water solute process characterization: an integrated approach. CRC, Hoboken, pp 559–580

    Google Scholar 

  • Pesce S, Martin-Laurent F, Rouard N, Robin A, Montuelle B (2010) Evidence for adaptation of riverine sediment microbial communities to diuron mineralization: incidence of runoff and soil erosion. J Soils Sediments 10(4):698–707. doi:10.1007/s11368-010-0202-x

    CAS  Google Scholar 

  • Poissant L, Beauvais C, Lafrance P, Deblois C (2008) Pesticides in fluvial wetlands catchments under intensive agricultural activities. Sci Total Environ 404(1):182–195. doi:10.1016/j.scitotenv.2008.05.030

    PubMed  CAS  Google Scholar 

  • Pot V, Šimůnek J, Benoit P, Coquet Y, Yra A, Martínez-Cordón MJ (2005) Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores. J Contam Hydrol 81(1–4):63–88. doi:10.1016/j.jconhyd.2005.06.013

    PubMed  CAS  Google Scholar 

  • Quilbe R, Rousseau AN, Lafrance P, Leclerc J, Amrani M (2006) Selecting a pesticide fate model at the watershed scale using a multi-criteria analysis. Water Qual Res J Can 41(3):283–295

    CAS  Google Scholar 

  • Ramwell CT, Heather AIJ, Shepherd AJ (2002) Herbicide loss following application to a roadside. Pest Manag Sci 58:695–701. doi:10.1002/ps.506

    PubMed  CAS  Google Scholar 

  • Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. doi:10.1016/j.scitotenv.2007.04.046

    PubMed  CAS  Google Scholar 

  • Reus J, Leendertse P, Bockstaller C, Fomsgaard I, Gutsche V, Lewis K, Nilsson C, Pussemier L, Trevisan M, van der Werf H (2002) Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agr Ecosyst Environ 90(2):177–187. doi:10.1016/S0167-8809(01)00197-9

    Google Scholar 

  • Rose MT, Sanchez-Bayo F, Crossan AN, Kennedy LR (2006) Pesticide removal from cotton farm tailwater by a pilot-scale ponded wetland. Chemosphere 63:1849–1858. doi:10.1016/j.chemosphere.2005.10.024

    PubMed  CAS  Google Scholar 

  • Schriever CA, von der Ohe PC, Liess M (2007) Estimating pesticide runoff in small streams. Chemosphere 68(11):2161–2171. doi:10.1016/j.chemosphere.2007.01.086

    PubMed  CAS  Google Scholar 

  • Siegel S (1956) Nonparametric statistics for the behavioural sciences. McGraw-Hill, New York

    Google Scholar 

  • Siimes K, Kämäri J (2003) A review of available pesticide leaching models: selection of models for simulation of herbicide fate in Finnish sugar beet cultivation. Boreal Environ Res 8:31–51

    CAS  Google Scholar 

  • Smith EP, Rose KA (1995) Model goodness-of-fit analysis using regression and related techniques. Ecol Model 77:49–64. doi:10.1016/0304-3800(93)E0074-D

    Google Scholar 

  • Sood C, Bhagat RM (2005) Interfacing geographical information systems and pesticide models. Curr Sci 89(8):1362–1370

    CAS  Google Scholar 

  • Stenrød M, Heggen HE, Bolli RI, Eklo OM (2008) Testing and comparison of three pesticide risk indicator models under Norwegian conditions—a case study in the Skuterud and Heiabekken catchments. Agr Ecosyst Environ 123(1–3):15–19. doi:10.1016/j.agee.2007.03.003

    Google Scholar 

  • Takken I, Govers G, Jetten V, Nachtergaele J, Steegen A, Poesen J (2005) The Influence of both descriptions and runoff patterns on predictions from a spatially distributed soil erosion model. Earth surf Process Landf 30(2):213–229. doi:10.1002/esp.1176

    Google Scholar 

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2005) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Technical report. Groundwater Simulations Group, Waterloo

    Google Scholar 

  • Thiollet-Scholtus M (2004) Construction d'un indicateur de qualité des eaux de surface vis-à-vis des produits phytosanitaires à l'échelle du bassin versant viticole. Thèse Institut national Polytechnique de Lorraine, Colmar, France, (in French). + annexes. Available from http://www.inra.fr/theses/these-integrale/Theses/thiollet/pdf/these.pdf

    Google Scholar 

  • Tiktak A, Boesten JJTI, van der Linden AMA, Vanclooster M (2006) Mapping ground water vulnerability to pesticide leaching with a process-based metamodel of EuroPEARL. J Environ Qual 35:1213–1226. doi:10.2134/jeq2005.0377

    PubMed  CAS  Google Scholar 

  • Tortrat F (2005) Decision oriented modelling of herbicide transfer by surface and subsurface flow in agricultural catchments. Ph.D. Rennes ENSA, INRA-Agrocampus, Rennes, France (in French). Available from http://www.rennes.inra.fr/umrsas/documentation/publications_de_l_unite/theses

  • Trevisan M, Vischetti C (2004) Assessment of uncertainty associated with the extent of simulation processes from point to catchment: application to 1D pesticide leaching models. In: Alvarez-Benedi J (ed) Soil water solute process characterization: an integrated approach. CRC, Hoboken, pp 673–690, ISBN: 978140032086

    Google Scholar 

  • Vanclooster M, Boesten JJTI, Trevisan M, Brown CD, Capri E, Eklo OM, Gottesbüren B, Gouy V, van der Linden AMA (2000) A European test of pesticide-leaching models: methodology and major recommendations. Agric Water Manag 44(1–3):1–19. doi:10.1016/S0378-3774(99)00081-5

    Google Scholar 

  • Verma P, Singh P, George KV, Singh HV, Devotta S, Singh RN (2009) Uncertainty analysis of transport of water and pesticide in an unsaturated layered soil profile using fuzzy set theory. Appl Math Model 33(2):770–782. doi:10.1016/j.apm.2007.12.004

    Google Scholar 

  • Vieux BE (1991) Geographic information systems and non-point source water quality and quantity modeling. Hydrol Process 5:101–113. doi:10.1002/hyp.3360050108

    Google Scholar 

  • Wagener T, McIntyre N, Lees MJ, Wheater HS, Gupta HV (2003) Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrol Process 17:455–476. doi:10.1002/hyp.1135

    Google Scholar 

  • Wauchope RD (1978) The pesticide content of surface water draining from agricultural field: a review. J Environ Qual 7(4):459–471. doi:10.2134/jeq1978.00472425000700040001x

    CAS  Google Scholar 

  • Wauchope RD, Ahuja LR, Arnold JG, Bingner R, Lowrance R, van Genuchten MT, Adams LD (2003) Software for pest-management science: computer models and databases from the United States Department of Agriculture—Agricultural Research Service. Pest Manag Sci 59:691–698. doi:10.1002/ps.682

    PubMed  Google Scholar 

  • Wauchope RD (2005) Pesticides and watershed-scale modelling: solutions for water quality management. J Agr Food Chem 53:8834–18834. doi:10.1021/jf051958m

    CAS  Google Scholar 

  • Weill S, Mazzia A, Putti M, Paniconi C (2010) Coupling water flow and solute transport into a physically-based surface–subsurface hydrological model. Adv Wat Resour. doi:10.1016/j.advwatres.2010.10.001

  • Williams JB, (2002) Phytoremediation in Wetland Ecosystems: Progress, Problems, and Potential. Crit Rev Plant Sci 21(6): 607–635. doi:10.1080/0735-260291044386

    CAS  Google Scholar 

  • Wohlfart J, Colin F, Assaghir Z, Bockstaller C (2010) Assessing the impact of the spatial arrangement of agricultural practices on pesticide runoff in small catchments: Combining hydrological modeling and supervised learning. Ecol Indic (4):826–839. doi:10.1016/j.ecolind.2010.01.004

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353. doi:10.1016/S0019-9958(65)90241-X

    Google Scholar 

  • Zheng Y, Keller AA (2006) Understanding parameter sensitivity and its management implications in watershed-scale water quality modelling. Water Resour Res 42(5):W05402. doi:10.1029/2005WR004539

    Google Scholar 

Download references

Acknowledgements

The paper benefited much from discussions with R. Coupe from USGS and G. Imfeld from LHyGeS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Payraudeau.

About this article

Cite this article

Payraudeau, S., Gregoire, C. Modelling pesticides transfer to surface water at the catchment scale: a multi-criteria analysis. Agron. Sustain. Dev. 32, 479–500 (2012). https://doi.org/10.1007/s13593-011-0023-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0023-3

Keywords

Navigation