Abstract
Tropical landscapes are rapidly changing due to deforestation and agricultural expansion, entailing the loss and fragmentation of natural habitats. Understanding how these changes affect the genetic diversity and gene flow in key native pollinators is of great importance to assure their survival and provision of pollination services. In this context, we studied how landscape features influence genetic diversity and gene flow in one of the most widespread species of stingless bees in the Neotropical region, Tetragonisca angustula. We evaluated bees from 46 nests sampled across forested, agricultural and urban landscapes within the Atlantic Forest, genotyped at 745 single-nucleotide polymorphisms (SNPs). We found that forest cover negatively influenced the heterozygosity at a 500-m scale, although inbreeding and gene flow were not influenced by landscape features. Gene flow was explained mainly by geographic distance, indicating that T. angustula can disperse across heterogeneous and human-altered landscapes.
This is a preview of subscription content, access via your institution.



Code availability
Not applicable.
References
Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664. https://doi.org/10.1101/gr.094052.109
Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations. Wiley-Blackwell, West Sussex
Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos PS, Billen J, Wenseleers T (2011) Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet 12:647–658. https://doi.org/10.1007/s10592-010-0171-z
Araujo ED, Costa M, Chaud-Netto J, Fowler HG (2004) Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Braz J Biol 64:563–568. https://doi.org/10.1590/S1519-69842004000400003
Armenteras D, Espelta JM, Rodríguez N, Retana J (2017) Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob Environ Chang 46:139–147. https://doi.org/10.1016/j.gloenvcha.2017.09.002
Baitala TV, Mangolin CA, de Alencar V, de Toledo A, Ruvolo-Takasusuki MCC (2006) RAPD polymorphism in Tetragonisca angustula (Hymenoptera; Meliponinae, Trigonini) populations. Sociobiology 48:861–873
Barton K (2018) MuMIn: Multi-model inference. R Package Version 1(40):4
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57:289–300. https://doi.org/10.2307/2346101
Brito RM, Francisco FO, Domingues-Yamada AMT, Gonçalves PHP, Pioker FC, Soares AEE, Arias MC (2009) Characterization of microsatellite loci of Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). Conserv Genet Resour 1:183–187. https://doi.org/10.1007/s12686-009-9045-4
Brosi BJ (2009) The complex responses of social stingless bees (Apidae: Meliponini) to tropical deforestation. For Ecol Manage 258:1830–1837
Brosi BJ, Daily GC, Shih TM, Oviedo F, Duran G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783. https://doi.org/10.1111/j.1365-2664.2007.01412.x
Camargo JMF, Pedro SRM (2013) Meliponini Lepeletier, 1836, in: Moure JS, Urban D, and Melo GAR (Eds.), Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region - online version
Carvalho CS, Lanes ÉCM, Silva AR, Caldeira CF, Carvalho-Filho N, Gastauer M, Imperatriz-Fonseca VL, Nascimento W Jr, Oliveira G, Siqueira JO (2019) Habitat loss does not always entail negative genetic consequences. Front Genet 10:1011. https://doi.org/10.3389/fgene.2019.01101
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes|Genomes|Genetics 1: 171–182. https://doi.org/10.1534/g3.111.000240
Cook J, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286. https://doi.org/10.1016/0169-5347(95)90011-X
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Davis ES, Murray TE, Fitzpatrick Ú, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935. https://doi.org/10.1111/j.1365-294X.2010.04868.x
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. https://doi.org/10.1111/1755-0998.12157
Dreier S, Redhead JW, Warren IA, Bourke AF, Heard MS, Jordan WC, Sumner S, Wang J, Carvell C (2014) Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape. Mol Ecol 23:3384–3395. https://doi.org/10.1111/mec.12823
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772
Francisco FO, Santiago LR, Brito RM, Oldroyd BP, Arias MC (2014) Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9. https://doi.org/10.1007/s13592-013-0224-7
Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC (2017) Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers. Insect Science 24:877–890. https://doi.org/10.1111/1744-7917.12371
François O, Martins H, Caye K, Schoville SD (2016) Controlling false discoveries in genome scans for selection. Mol Ecol 25:454–469. https://doi.org/10.1111/mec.13513
Frichot E, François O (2015) LEA: An R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929. https://doi.org/10.1111/2041-210X.12382
Goulson D, Lepais O, O’connor S, Osborne JL, Sanderson RA, Cussans J, Goffe L, Darvill B (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47:1207–1215. https://doi.org/10.1111/j.1365-2664.2010.01872.x
Grab H, Branstetter MG, Amon N, Urban-Mead KR, Park MG, Gibbs J, Blitzer EJ, Poveda K, Loeb G, Danforth BN (2019) Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363:282–284. https://doi.org/10.1126/science.aat6016
Grüter C (2020) Stingless bees: their behaviour, ecology and evolution. Springer Nature, Cham
Hardy OJ, Vekemans X (2002) SPAGeDi : a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620
Hijmans RJ (2014) Introduction to the ‘raster’ package (version 2.2–12)
Jackson JM, Pimsler ML, Oyen KJ, Koch-Uhuad JB, Herndon JD, Strange JP, Dillon ME, Lozier JD (2018) Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Mol Ecol 27:2926–2942. https://doi.org/10.1111/mec.14735
Jackson JM, Pimsler ML, Oyen KJ, Strange JP, Dillon ME, Lozier JD (2020) Local adaptation across a complex bioclimatic landscape in two montane bumble bee species. Mol Ecol 29:920–939. https://doi.org/10.1111/mec.15376
Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881. https://doi.org/10.1890/13-0388.1
Jaffé R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, Jha S (2016a) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278. https://doi.org/10.1007/s10592-015-0779-0
Jaffé R, Pope N, Acosta AL, Alves DA, Arias MC, De la Rúa P, Francisco FO, Giannini TC, González-Chaves A, Imperatriz-Fonseca VL (2016b) Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Mol Ecol 25:5345–5358. https://doi.org/10.1111/mec.13852
Jaffé R, Veiga JC, Pope NS, Lanes ÉC, Carvalho CS, Alves R, Andrade SC, Arias MC, Bonatti V, Carvalho AT (2019) Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evol Appl 12:1164–1177. https://doi.org/10.1111/eva.12794
Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006. https://doi.org/10.1111/mec.13090
Jha S, Kremen C (2013) Urban land use limits regional bumble bee gene flow. Mol Ecol 22:2483–2495. https://doi.org/10.1111/mec.12275
Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473. https://doi.org/10.1111/nph.12989
Jombart T (2008) Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129
Kelemen EP, Rehan SM (2021) Conservation insights from wild bee genetic studies: geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 14:1485–1496. https://doi.org/10.1111/eva.13221
Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. https://doi.org/10.1111/ele.12082
Koch JB, Looney C, Sheppard WS, Strange JP (2017) Patterns of population genetic structure and diversity across bumble bee communities in the Pacific Northwest. Conserv Genet 18:507–520. https://doi.org/10.1007/s10592-017-0944-8
Landaverde-González P, Baltz LM, Escobedo-Kenefic N, Mérida J, Paxton RJ, Husemann M (2018) Recent low levels of differentiation in the native Bombus ephippiatus (Hymenoptera: Apidae) along two Neotropical mountain-ranges in Guatemala. Biodivers Conserv 27:3513–3531. https://doi.org/10.1007/s10531-018-1612-0
Landaverde-González P, Enríquez E, Ariza MA, Murray T, Paxton RJ, Husemann M (2017) Fragmentation in the clouds? The population genetics of the native bee Partamona bilineata (Hymenoptera: Apidae: Meliponini) in the cloud forests of Guatemala. Conserv Genet 18:631–643. https://doi.org/10.1007/s10592-017-0950-x
Lichtenberg EM, Mendenhall CD, Brosi B (2017) Foraging traits modulate stingless bee community disassembly under forest loss. J Anim Ecol 86:1404–1416. https://doi.org/10.1111/1365-2656.12747
López-Uribe MM, Morreale SJ, Santiago CK, Danforth BN (2015) Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape. PLoS ONE 10:e0125719. https://doi.org/10.1371/journal.pone.0125719
López-Uribe MM, Jha S, Soro A (2019) A trait-based approach to predict population genetic structure in bees. Mol Ecol 28:1919–1929. https://doi.org/10.1111/mec.15028
Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425
Lozier JD, Strange JP, Koch JB (2013) Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conserv Genet 14:1099–1110. https://doi.org/10.1007/s10592-013-0498-3
Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. https://doi.org/10.1016/S0169-5347(03)00008-9
McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890. https://doi.org/10.1073/pnas.0706568104
Michener CD (1974) The social behavior of the bees: a comparative study. Belknap Press of Harvard University Press, Massachusetts
Millette KL, Keyghobadi N (2015) The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales. Ecol Evol 5:73–86. https://doi.org/10.1002/ece3.1325
Monteiro WP, Veiga JC, Silva AR, Carvalho CS, Lanes EMC, Rico Y, Jaffé R (2019) Everything you always wanted to know about gene flow in tropical landscapes (but were afraid to ask). Peer J 7:e6446. https://doi.org/10.7717/peerj.6446
Mueller MY, Moritz RFA, Kraus FB (2012) Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana. Ecol Evol 2:1304–1311. https://doi.org/10.1002/ece3.203
Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501
Oliveira RD, Nunes FDM, Campos APS, Vasconcelos SM, Roubik D, Goulart LR, Kerr WE (2004) Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae, Trigonini) based on RAPD markers. Genet Mol Biol 27:181–186. https://doi.org/10.1590/S1415-47572004000200009
Packer L, Owen R (2001) Population genetic aspects of pollinator decline. Conservation Ecology 5: 4. http://www.jstor.org/stable/26271799
Peterman WE (2018) ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647. https://doi.org/10.1111/2041-210X.12984
Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413. https://doi.org/10.1111/mec.12747
Pflüger FJ, Balkenhol N (2014) A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal. Mol Ecol 23:2146–2156. https://doi.org/10.1111/mec.12712
Pinheiro J, Bates D, DebRoy S, Sarkar D, CoreTeam R (2014) nlme: Linear and nonlinear mixed effects models. R Package Version 3(1):117
Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. https://doi.org/10.1371/journal.pone.0032253
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007
Renauld, M, Hutchinson, A, Loeb, G, Poveda, K, & Connelly, H (2016) Landscape simplification constrains adult size in a native ground-nesting bee. PLoS One, 11, e0150946. https://doi.org/10.1371/journal.pone.0150946
Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Cons 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021
Santiago LR, Francisco FO, Jaffé R, Arias MC (2016) Genetic variability in captive populations of the stingless bee Tetragonisca angustula. Genetica 144:397–405. https://doi.org/10.1007/s10709-016-9908-z
Santos CF, Imperatriz-Fonseca VL, Arias MC (2016) Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomological Science 19:245–254. https://doi.org/10.1111/ens.12195
Silva MD, Ramalho M, Rosa JF (2021) Annual survival rate of tropical stingless bee colonies (Meliponini): variation among habitats at the landscape scale in the Brazilian Atlantic Forest. Sociobiology 68: 5147. https://doi.org/10.13102/sociobiology.v68i1.5147
Slaa EJ (2006) Population dynamics of a stingless bee community in the seasonal dry lowlands of Costa Rica. Insectes Soc 53:70–79. https://doi.org/10.1007/s00040-005-0837-6
Slaa EJ, Sanchez Chaves LA, Malagodi-Braga KS, Hofstede FE (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293–315. https://doi.org/10.1051/apido:2006022
Soro A, Quezada-Euan JJG, Theodorou P, Moritz RF, Paxton RJ (2017) The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. Conserv Genet 18:607–619. https://doi.org/10.1007/s10592-016-0912-8
Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591. https://doi.org/10.1111/j.1365-294X.2010.04657.x
Steffan-Dewenter I, Schiele S (2008) Do resources or natural enemies drive bee population dynamics in fragmented habitats. Ecology 89:1375–1387. https://doi.org/10.1890/06-1323.1
Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142. https://doi.org/10.1890/06-1323.1
Stuchi ALPB, Toledo VAA, Lopes DA, Cantagalli LB, Ruvolo-Takasusuki MCC (2014) Molecular marker to identify two stingless bee species: Tetragonisca angustula and Tetragonisca fiebrigi (Hymenoptera, Meliponinae). Sociobiology 59: 123–134. https://doi.org/10.13102/sociobiology.v59i1.671
Suni SS, Brosi BJ (2012) Population genetics of orchid bees in a fragmented tropical landscape. Conserv Genet 13:323–332. https://doi.org/10.1007/s10592-011-0284-z
Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595
Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 67:571–573. https://doi.org/10.1111/j.1469-185X.2011.00216.x
Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF (2012) Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol Rev 87:661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x
Turner MG, Gardner RH (2015) Landscape ecology in theory and practice. Springer, New York
Velez-Ruiz RI, Gonzalez VH, Engel MS (2013) Observations on the urban ecology of the Neotropical stingless bee Tetragonisca angustula (Hymenoptera: Apidae: Meliponini). Journal of Melittology 15: 1–8. https://doi.org/10.17161/jom.v0i15.4528
Vollet-Neto A, Koffler S, dos Santos CF, Menezes C, Nunes FMF, Hartfelder K, Imperatriz-Fonseca VL, Alves DA (2018) Recent advances in reproductive biology of stingless bees. Insectes Soc 65:201–212. https://doi.org/10.1007/s00040-018-0607-x
Warzecha D, Diekötter T, Wolters V, Jauker F (2016) Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecol 31:1449–1455. https://doi.org/10.1007/s10980-016-0349-y
Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397. https://doi.org/10.2307/2389612
Williams M (2003) Deforesting the Earth: from prehistory to global crisis. The University of Chicago Press Ltd., London
Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262. https://doi.org/10.1051/apido/2009026
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York
Acknowledgements
We are thankful to Roberto Gaioski Jr. and Rafael S. C. Alves for the assistance during fieldwork, Eduardo A. B. Almeida (USP) for bee identification, Carlos Batista and Aline Moraes for help in the laboratory, and José B. Pinheiro (USP) and Anete P. Souza (UNICAMP) for allowing us to use their laboratory facilities. We are also very grateful to the private property owners for allowing us to sample bees on their land. Work was carried out under permit number 48402/1 (SISBIO) from the Brazilian Ministry of Environment.
Funding
This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES, Finance Code 001 to MMB, and grant number 88887.156652/2017–00 to CCS), Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (processes #2013/50421-2; #2020/01779-5; #2021/08534-0; #2021/10195-0), National Council for Scientific and Technological Development - CNPq (processes #442147/2020-1; #402765/2021-4; #313016/2021-6), and Associação Brasileira de Estudo das Abelhas (A.B.E.L.H.A.) to DAA.
Author information
Authors and Affiliations
Contributions
Conceptualization: MMB, MCR, DAA; Investigation & Data curation: MMB; Formal analysis: MMB, RJ, CSC, ECML, AAP; Methodology: MMB, MCR, ASC; Funding acquisition: MCR, DAA; Resources: MIZ, ASC, VLIF; Supervision: DAA; Writing—original draft: MMB, DAA; Review & editing: MMB, RJ, CSC, ECML, AAP, MIZ, ASC, MCR, VLIF, DAA.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
The authors declare that all ethical issues have been appropriately dealt with. All authors have given their consent to be part of this publication.
Consent for publication
All authors have given their consent to publish this manuscript.
Conflict of interest
The authors declare no competing interests.
Additional information
Manuscript editor: Klaus Hartfelder
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
de Matos Barbosa, M., Jaffé, R., Carvalho, C.S. et al. Landscape influences genetic diversity but does not limit gene flow in a Neotropical pollinator. Apidologie 53, 48 (2022). https://doi.org/10.1007/s13592-022-00955-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13592-022-00955-0
Keywords
- landscape genetics
- SNPs
- rainforest
- stingless bees
- Tetragonisca angustula