Skip to main content

Vitellogenin of the solitary bees Centris tarsata and Centris analis (Hymenoptera: Apidae): cDNA structural analysis and gene expression

Abstract

Vitellogenin (Vg) plays a vital role in the reproduction of oviparous species, as the precursor of the major egg storage protein. In bees, most of the studies of this protein rely on honey bees (Apis mellifera), and very little is known in solitary species. The solitary bees Centris tarsata and C. analis were chosen to characterize vg cDNA and better understand its expression. The Vg-deduced amino acid sequences from these bees have typical Vg features found in other hymenopterans. Besides its main site of synthesis, the fat body, transcripts of vg were also observed in ovaries. Males also showed expression of vg, although in lower levels compared with females. During development, vg expression was observed in late larvae, pupae, and female adults. The highest amounts of vg transcripts were observed in egg-laying females. Expression of vg increased rapidly in a few hours after female adult emergence, which indicates that its gene expression does not depend on mating to be triggered.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

References

  1. Aguiar, C.M.L., Garófalo, C.A. (2004) Nesting biology of Centris (Hemisiella) tarsata Smith (Hymenoptera, Apidae, Centridini). Rev Bras Zool 21, 477–486. https://doi.org/10.1590/S0101-81752004000300009

    Article  Google Scholar 

  2. Alonso, J.D.S., Silva, J.F., Garófalo, C.A. (2012) The effects of cavity length on nest size, sex ratio and mortality of Centris (Heterocentris ) analis (Hymenoptera, Apidae, Centridini). Apidologie 43, 436–448. https://doi.org/10.1007/s13592-011-0110-0

    Article  Google Scholar 

  3. Amdam, G.V., Omholt, S.W. (2003) The hive bee to forager transition in honeybee colonies: The double repressor hypothesis. J Theor Biol 223, 451–464. https://doi.org/10.1016/S0022-5193(03)00121-8

    CAS  Article  PubMed  Google Scholar 

  4. Amdam, G.V., Page, R.E. (2010) The developmental genetics and physiology of honeybee societies. Anim Behav 79, 973–980. https://doi.org/10.1016/j.anbehav.2010.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amdam, G.V., Norberg, K., Hagen, A., Omholt, S.W. (2003) Social exploitation of vitellogenin. Proc Natl Acad Sci 100, 1799–1802. https://doi.org/10.1073/pnas.0333979100

    CAS  Article  PubMed  Google Scholar 

  6. Amdam, G.V., Norberg, K., Fondrk, M.K., Page, R.E. (2004a) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc Natl Acad Sci 101, 11350–11355. https://doi.org/10.1073/pnas.0403073101

    CAS  Article  PubMed  Google Scholar 

  7. Amdam, G.V., Simões, Z.L.P., Hagen, A. et al. (2004b) Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol 39, 767–773. https://doi.org/10.1016/j.exger.2004.02.010

    CAS  Article  PubMed  Google Scholar 

  8. Araújo, P.C.S., Lourenço, A.P., Raw, A. (2016) Trap-nesting bees in montane grassland (campo rupestre) and cerrado in Brazil: collecting generalist or specialist nesters. Neotrop Entomol 45, 482–489. https://doi.org/10.1007/s13744-016-0395-9

    Article  PubMed  Google Scholar 

  9. Barchuk, A.R., Bitondi, M.M.G., Simões, Z.L.P. (2002) Effects of juvenile hormone and ecdysone on the timing of vitellogenin appearance in hemolymph of queen and worker pupae of Apis mellifera. J Insect Sci 2, 1–8. https://doi.org/10.1673/031.002.0101

    Article  PubMed  PubMed Central  Google Scholar 

  10. Batra, S.W. (1984) Solitary bees. Sci. Am. 250, 120–127. https://doi.org/10.1038/scientificamerican0284-120

    Article  Google Scholar 

  11. Bellés, X. (2004) Vitellogenesis directed by juvenile hormone. In Raikhel A.S. (Ed.), Reproduction biology of invertebrates: progress in vitellogenesis (pp. 157–197). Science Publishers Inc., Boca Raton

    Google Scholar 

  12. Bossert, S., Murray, E.A., Almeida, E.A.B. et al. (2019) Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol Phylogenet Evol 130, 121–131. https://doi.org/10.1016/j.ympev.2018.10.012

    Article  PubMed  Google Scholar 

  13. Caetano-Anollés, G., Gresshoff, P.M. (1994) Staining nucleic acids with silver: an alternative to radioisotopic and fluorescent labeling. Promega Notes Mag 45, 13–20

    Google Scholar 

  14. Cardinal, S., Danforth, B.N. (2013) Bees diversified in the age of eudicots. Proc R Soc B Biol Sci 280, 20122686. https://doi.org/10.1098/rspb.2012.2686

    Article  Google Scholar 

  15. Carducci, F., Biscotti, M.A., Canapa, A. (2019) Vitellogenin gene family in vertebrates: evolution and functions. Eur Zool J 86, 233–240. https://doi.org/10.1080/24750263.2019.1631398

    CAS  Article  Google Scholar 

  16. Chérasse, S., Dacquin, P., Aron, S. (2019) Mating triggers an up-regulation of vitellogenin and defensin in ant queens. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 205, 745–753. https://doi.org/10.1007/s00359-019-01362-0

    CAS  Article  Google Scholar 

  17. Dallacqua, R.P., Simões, Z.L.P., Bitondi, M.M.G. (2007) Vitellogenin gene expression in stingless bee workers differing in egg-laying behavior. Insectes Soc 54, 70–76. https://doi.org/10.1007/s00040-007-0913-1

    Article  Google Scholar 

  18. de Souza, E.A., Neves, C.A., de Oliveira Campos, L.A. et al. (2007) Effect of mating delay on the ovary of Melipona quadrifasciata anthidioides (Hymenoptera: Apidae) queens. Micron 38, 471–477. https://doi.org/10.1016/j.micron.2006.08.005

    CAS  Article  PubMed  Google Scholar 

  19. Engels, W., Kaatz, H., Zillikens, A. et al. (1990) Honey bee reproduction: vitellogenin and caste-specific regulation of fertility. In Hoshi M., Yamashita O. (Eds.), Advances in invertebrate reproduction 5 (pp. 495–502). Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam

    Google Scholar 

  20. Falcon, T., Pinheiro, D.G., Ferreira-Caliman, M.J. et al. (2019) Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. PLoS One 14, e0213796. https://doi.org/10.1371/journal.pone.0213796

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Freitas, F.C.P., Depintor, T.S., Agostini, L.T. et al. (2019) Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci Rep 9, 17692. https://doi.org/10.1038/s41598-019-53544-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Freitas, F.C.P., Lourenço, A.P., Nunes, F.M.F. et al. (2020) The nuclear and mitochondrial genomes of Frieseomelitta varia – a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics 21, 386. https://doi.org/10.1186/s12864-020-06784-8

    CAS  Article  Google Scholar 

  23. Garófalo, C.A., Martins, C.F., Alves-dos-Santos, I. (2004) The Brazilian solitary bee species caught in trap nests. In Freitas B.M. (Ed.), Solitary bees: conservation, rearing and management for pollination (pp. 77–84). Imprensa Universitária, Fortaleza

    Google Scholar 

  24. Garófalo, C.A., Martins, C.F., de Aguiar, C.M.L. et al. (2012) As abelhas solitárias e perspectivas para seu uso na polinização no Brasil. In Imperatriz-Fonseca V.L., Canhos D.A.L., de Alves D.A., Saraiva A.M. (Eds.), Polinizadores no Brasil: contribuição e perspectivas para a biodiversidade, uso sustentável, conservação e serviços ambientais (pp. 183–202). Editora da Universidade de São Paulo, São Paulo

    Google Scholar 

  25. Guidugli, K.R., Piulachs, M.-D., Bellés, X. et al. (2005) Vitellogenin expression in queen ovaries and in larvae of both sexes of Apis mellifera. Arch Insect Biochem Physiol 59, 211–218. https://doi.org/10.1002/arch.20061

    CAS  Article  PubMed  Google Scholar 

  26. Guidugli-Lazzarini, K.R., do Nascimento, A.M., Tanaka, É.D. et al. (2008) Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers. J Insect Physiol 54, 1138–1147. https://doi.org/10.1016/j.jinsphys.2008.04.021

    CAS  Article  PubMed  Google Scholar 

  27. Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 4, 1–9

    Google Scholar 

  28. Harnish, D.G., White, B.N. (1982) Insect vitellins: identification, purification, and characterization from eight orders. J Exp Zool 220, 1–10. https://doi.org/10.1002/jez.1402200102

    CAS  Article  Google Scholar 

  29. Hartfelder, K., Engels, W. (1998) Social Insect Polymorphism: Hormonal Regulation of Plasticity in Development and Reproduction in the Honeybee. In Pedersen R.A., Schatten G.P. (Eds.), Current Topics in Developmental Biology (pp. 45–77). Academic Press

  30. Harwood, G., Amdam, G., Freitak, D. (2019) The role of Vitellogenin in the transfer of immune elicitors from gut to hypopharyngeal glands in honey bees (Apis mellifera). J Insect Physiol 112, 90–100. https://doi.org/10.1016/j.jinsphys.2018.12.006

    CAS  Article  PubMed  Google Scholar 

  31. Havukainen, H., Halskau, Ø., Amdam, G.V. (2011) Social pleiotropy and the molecular evolution of honey bee vitellogenin. Mol Ecol 20, 5111–5113. https://doi.org/10.1111/j.1365-294X.2011.05351.x

    CAS  Article  PubMed  Google Scholar 

  32. Hunt, J.H., Kensinger, B.A., Kossuth, J. et al. (2007) A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to castecontaining insect societies. Proc Natl Acad Sci USA 104, 14020–14025. https://doi.org/10.1073/pnas.0705660104

    CAS  Article  PubMed  Google Scholar 

  33. Jones, D.T., Taylor, W.R., Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275–282. https://doi.org/10.1093/bioinformatics/8.3.275

    CAS  Article  Google Scholar 

  34. Kapheim, K.M., Pan, H., Li, C. et al. (2015) Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. Science 348, 1139–1143. https://doi.org/10.1126/science.aaa4788

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Kelley, L.A., Mezulis, S., Yates, C.M. et al. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845–858

    CAS  Article  Google Scholar 

  36. Kent, C.F., Issa, A., Bunting, A.C., Zayed, A. (2011) Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera. Mol Ecol 20, 5226–5235. https://doi.org/10.1111/j.1365-294X.2011.05299.x

    CAS  Article  PubMed  Google Scholar 

  37. Kocher, S.D., Richard, F.J., Tarpy, D.R., Grozinger, C.M. (2008) Genomic analysis of post-mating changes in the honey bee queen ( Apis mellifera). BMC Genomics 9, 1–15. https://doi.org/10.1186/1471-2164-9-232

    CAS  Article  Google Scholar 

  38. Krombein, K.V. (1967) Wasps and bees life histories nests and associates. Smithsonian Press, Washington, D.C.

    Google Scholar 

  39. Kumar, S., Stecher, G., Li, M. et al. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0

    CAS  Article  Google Scholar 

  41. Lee, K.Y., Yoon, H.J., Lee, S.B. et al. (2009) Molecular cloning and characterization of a vitellogenin of the bumblebee Bombus ignitus. Int J Ind Entomol 18, 33–40

    Google Scholar 

  42. Lee, K.Y., Yoon, H.J., Jin, B.R. (2015) Osmia cornifrons vitellogenin: CDNA cloning, structural analysis and developmental expression. Entomol Res 45, 94–101. https://doi.org/10.1111/1748-5967.12098

    CAS  Article  Google Scholar 

  43. Letunic, I., Bork, P. (2017) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46, D493–D496. https://doi.org/10.1093/nar/gkx922

    CAS  Article  PubMed Central  Google Scholar 

  44. Li, J., Huang, J., Cai, W. et al. (2010) The vitellogenin of the bumblebee, Bombus hypocrita: studies on structural analysis of the cDNA and expression of the mRNA. J Comp Physiol B 180, 161–170. https://doi.org/10.1007/s00360-009-0434-5

    CAS  Article  PubMed  Google Scholar 

  45. Lourenço, A.P., Mackert, A., Cristino, A.D.S., Simões, Z.L.P. (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39, 372–385. https://doi.org/10.1051/apido:2008015

    CAS  Article  Google Scholar 

  46. Lourenço, A.P., Santos, A.P.M., Checon, H.H. et al. (2020) Cavity-nesting bee communities in areas with different levels of vegetation disturbance. Stud Neotrop Fauna Environ 00, 1–13. https://doi.org/10.1080/01650521.2019.1710334

    Article  Google Scholar 

  47. Macivor, J.S. (2017) Cavity-nest boxes for solitary bees: a century of design and research. 48, 311–327. https://doi.org/10.1007/s13592-016-0477-z

  48. Martins, G.F., Serrão, J.E. (2004) Changes in the reproductive tract of Melipona quadrifasciata anthidioides (Hymenoptera: Apidae, Meliponini) queen after mating. Sociobiology 44, 241–254

    Google Scholar 

  49. Martins, A.C., Melo, G.A.R., Renner, S.S. (2014) The corbiculate bees arose from New World oil-collecting bees: Implications for the origin of pollen baskets. Mol Phylogenet Evol 80, 88–94. https://doi.org/10.1016/j.ympev.2014.07.003

    Article  PubMed  Google Scholar 

  50. Michener, C.D. (2007) Bees of the world, 2nd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  51. Morandin, C., Hietala, A., Helanterä, H. (2019) Vitellogenin and vitellogenin-like gene expression patterns in relation to caste and task in the ant Formica fusca. Insectes Soc 66, 519–531. https://doi.org/10.1007/s00040-019-00725-9

    Article  Google Scholar 

  52. Moure, JS, Urban, D, Melo, GAR (2012) Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region - online version. http://www.moure.cria.org.br/catalogue. Accessed 18 Mar 2020

  53. Münch, D., Ihle, K.E., Salmela, H., Amdam, G.V. (2015) Vitellogenin in the honey bee brain: Atypical localization of a reproductive protein that promotes longevity. Exp Gerontol 71, 103–108. https://doi.org/10.1016/j.exger.2015.08.001

    CAS  Article  PubMed  Google Scholar 

  54. Nelson, C.M., Ihle, K.E., Fondrk, M.K. et al. (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5, 0673–0677. https://doi.org/10.1371/journal.pbio.0050062

    CAS  Article  Google Scholar 

  55. Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, 45e–445e. https://doi.org/10.1093/nar/29.9.e45

  56. Piulachs, M.D., Guidugli, K.R., Barchuk, A.R. et al. (2003) The vitellogenin of the honey bee, Apis mellifera: Structural analysis of the cDNA and expression studies. Insect Biochem Mol Biol 33, 459–465. https://doi.org/10.1016/S0965-1748(03)00021-3

    CAS  Article  PubMed  Google Scholar 

  57. Raikhel, A., Dhadialla, T.S. (1992) Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol 37, 217–251. https://doi.org/10.1146/annurev.ento.37.1.217

    CAS  Article  PubMed  Google Scholar 

  58. Richards, M.H. (2019) Vitellogenin and vitellogenin-like genes: not just for egg production. Insectes Soc 66, 505–506. https://doi.org/10.1007/s00040-019-00731-x

    Article  Google Scholar 

  59. Romiguier, J., Cameron, S.A., Woodard, S.H. et al. (2016) Phylogenomics controlling for base compositional bias reveals a single origin of eusociality in corbiculate bees. Mol Biol Evol 33, 670–678. https://doi.org/10.1093/molbev/msv258

    CAS  Article  PubMed  Google Scholar 

  60. Rutherford, K., Parkhill, J., Crook, J. et al. (2000) Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945. https://doi.org/10.1093/bioinformatics/16.10.944

    CAS  Article  PubMed  Google Scholar 

  61. Salmela, H., Amdam, G.V., Freitak, D. (2015) Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathog 11, 1–12. https://doi.org/10.1371/journal.ppat.1005015

    CAS  Article  Google Scholar 

  62. Santos, P.K.F., Arias, M.C., Kapheim, K.M. (2019) Loss of developmental diapause as a prerequisite for social evolution in bees. Biol Lett 15, 1–7. https://doi.org/10.1101/649897

    Article  Google Scholar 

  63. Sappington, T.W., Raikhel, A. (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol 28, 277–300. https://doi.org/10.1016/S0965-1748(97)00110-0

    CAS  Article  PubMed  Google Scholar 

  64. Seehuus, S.C., Norberg, K., Gimsa, U. et al. (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci 103, 962–967. https://doi.org/10.1073/pnas.0502681103

    CAS  Article  PubMed  Google Scholar 

  65. Shen, Y., Chen, Y.Z., Lou, Y.H., Zhang, C.X. (2019) Vitellogenin and vitellogenin-like genes in the brown planthopper. Front Physiol 10, 1–15. https://doi.org/10.3389/fphys.2019.01181

    Article  Google Scholar 

  66. Sumner, S., Bell, E., Taylor, D. (2018) A molecular concept of caste in insect societies. Curr Opin Insect Sci 25, 42–50. https://doi.org/10.1016/j.cois.2017.11.010

    Article  PubMed  Google Scholar 

  67. Tanaka, E.D., Hartfelder, K. (2004) The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes. Arthropod Struct Dev 33, 431–442. https://doi.org/10.1016/j.asd.2004.06.006

    CAS  Article  PubMed  Google Scholar 

  68. Tanaka, É.D., Hartfelder, K. (2009) Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees. Genet Mol Biol 32, 582–593. https://doi.org/10.1590/S1415-47572009005000043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Tanaka, É.D., Schmidt Capella, I.C., Hartfelder, K. (2006) Cell death in the germline-mechanisms and consequences for reproductive plasticity in social bees. Braz J morphol Sci 23, 15–26

    Google Scholar 

  70. Tian, H., Vinson, S.B., Coates, C.J. (2004) Differential gene expression between alate and dealate queens in the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Insect Biochem Mol Biol 34, 937–949. https://doi.org/10.1016/j.ibmb.2004.06.004

    CAS  Article  Google Scholar 

  71. Tufail, M., Takeda, M. (2008) Molecular characteristics of insect vitellogenins. J Insect Physiol 54, 1447–1458. https://doi.org/10.1016/j.jinsphys.2008.08.007

    CAS  Article  PubMed  Google Scholar 

  72. Van Eeckhoven, J., Duncan, E.J. (2020) Mating status and the evolution of eusociality: Oogenesis is independent of mating status in the solitary bee Osmia bicornis. J Insect Physiol 121, 104003. https://doi.org/10.1016/j.jinsphys.2019.104003

    CAS  Article  PubMed  Google Scholar 

  73. Wahli, W. (1988) Evolution and expression of vitellogenin genes. Trends Genet 4, 227–232. https://doi.org/10.1016/0168-9525(88)90155-2

    CAS  Article  PubMed  Google Scholar 

  74. Wheeler, D.E., Kawooya, J.K. (1990) Purification and characterization of honey bee vitellogenin. Arch Insect Biochem Physiol 14, 253–267. https://doi.org/10.1002/arch.940140405

    CAS  Article  PubMed  Google Scholar 

  75. Zhang, W., Liu, Z., Zhu, M. et al. (2017) Molecular cloning, expression and oxidative stress response of the vitellogenin Gene (AccVg) from Apis cerana cerana. Apidologie 48, 599–611. https://doi.org/10.1007/s13592-017-0503-9

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Fernanda Batista Santos for helping with primer design, Dr. Tiago Falcón Lopes and Prof. Márcia MG Bitondi for the Centris analis vitellogenin cDNA sequence, and Vera Figueiredo for helping with the C. analis nests. We thank S. Hollis Woodard for critically reading and commenting on previous versions of this manuscript, and two anonymous reviewers for their constructive suggestions and comments. We thank the Centro Integrado de Pós-Graduação e Pesquisa em Saúde at the Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, for providing equipment and technical support for experiments, and the staff of the Life Sciences Core Facility (LaCTAD) from State University of Campinas (UNICAMP) and of the Nucleus of Services in Biotechnology (NSB) from Hemocenter Foundation (USP-Ribeirão Preto-SP) for DNA sequencing. Individuals were sampled under the SISBIO license numbers 37384 and 64885.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG (CBB - APQ-02514-14, CBB- PPM-00225-16), Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (2016/06657-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; scholarship for JCA, NPG, and JTF), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (scholarship for ACD).

Author information

Affiliations

Authors

Contributions

APL designed the study; APL, JCA, CPC, JTF, ACD, and NPG performed experiments and analysis; APL, JCA, ZLP, and CPC interpreted the data, wrote the paper, and participated in the revisions of it.

Corresponding author

Correspondence to Anete Pedro Lourenço.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Vitellogénine des abeilles solitaires Centris tarsata et Centris analis (Hymenoptera : Apidae) : analyse structurelle de l'ADNc et expression des genes.

Vitellogénine / expression génétique / mâle / ovaires.

Vitellogenin der solitären Bienen Centris tarsata und Centris analis (Hymenoptera: Apidae): Analysen der cDNA-Struktur und der Genexpression.

Vitellogenin / Genexpression / Männchen / Ovarien.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript editor: Cedric Alaux

Electronic supplementary material

ESM 1.

(ZIP 13967 kb)

ESM 2.

(DOCX 16 kb)

ESM 3.

(PDF 217 kb)

ESM 4.

(PDF 207 kb)

ESM 5.

(PDF 145 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agostini, J.C., Costa, C.P., Ferreira, J.T. et al. Vitellogenin of the solitary bees Centris tarsata and Centris analis (Hymenoptera: Apidae): cDNA structural analysis and gene expression. Apidologie 52, 292–307 (2021). https://doi.org/10.1007/s13592-020-00818-6

Download citation

Keywords

  • vitellogenin
  • gene expression
  • males
  • ovaries