Alvares C.A., Stape J.L., Sentelhas P.C., Gonçalves J.L.M. (2013) Modeling monthly mean air temperature for Brazil. Theor. Appl. Climatol. 113, 407–427, https://doi.org/10.1007/s00704-012-0796-6
Article
Google Scholar
Ayton S., Tomlinson S., Phillips R.D., Dixon K.W., Withers P.C. (2016) Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature. J. Exp. Biol. 219, 1552–1562, https://doi.org/10.1242/jeb.137588
Article
PubMed
Google Scholar
Barreto A.Q., Carvalho C.A.L., Lêdo C.A.S., Sodré G.S. (2011) Phenology of bees (Hymenoptera: Apoidea) in a fragment of seasonal semidecidual forest in Bahia, Brazil. Sociobiology 58, 393–402
Google Scholar
Chappell M.A. (1982) Temperature regulation of carpenter bees (Xylocopa californica) foraging in the Colorado desert of southern California. Physiol. Zool. 55, 267–280, https://doi.org/10.1086/physzool.55.3.30157890
Article
Google Scholar
Chappell M.A. (1984) Temperature regulation and energetics of the solitary bee Centris pallida during foraging and intermale mate competition. Physiol. Zool. 57, 215–225, https://doi.org/10.1086/physzool.57.2.30163707
Article
Google Scholar
Colinet H., Sinclair B.J., Vernon P., Renault D. (2015) Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140, https://doi.org/10.1146/annurev-ento-010814-021017
CAS
Article
PubMed
Google Scholar
Contrera F.A.L., Nieh J.C. (2007) The effect of ambient temperature on forager sound production and thoracic temperature in the stingless bee, Melipona panamica. Behav. Ecol. Sociobiol. 61, 887–897. https://doi.org/10.1007/s00265-006-0317-7
Article
Google Scholar
Cooper P.D., Schaffer W.M., Buchmann S.L. (1985) Temperature regulation of honey bees (Apis mellifera) foraging in the Sonoran desert. J. Exp. Biol. 114: 1–15
Google Scholar
Cruz D.O., Freitas B.M. Silva L.A. Silva E.M.S. Bomfim I.G.A. (2005) Pollination efficiency of the stingless bee Melipona subnitida on greenhouse sweet pepper. Pesq. Agropec. Bras. 40, 1197–1201, https://doi.org/10.1590/S0100-204X2005001200006
Article
Google Scholar
Giannini T.C., Maia-Silva C., Acosta A.L., Jaffé R., Carvalho A.T., Martins C.F., Zanella F.C.V., Carvalho C.A.L., Hrncir M., Saraiva A.M., Siqueira J.O., Imperatriz-Fonseca V.L. (2017) Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie 48, 784–794, https://doi.org/10.1007/s13592-017-0523-5
CAS
Article
Google Scholar
Gonzalez V.H., Hranitz J.M., Percival C.R., Pulley K.L., Tapsak S.T., Tscheulin T., Petanidou T., Barthell J.F. (2020) Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecol. Entomol., https://doi.org/10.1111/een.12842
Harano K., Nakamura J. (2016) Nectar loads as fuel for collecting nectar and pollen in honeybees: adjustment by sugar concentration. J. Comp. Physiol. A 202, 435–443. https://doi.org/10.1007/s00359-016-1088-x
CAS
Article
Google Scholar
Harano K., Maia-Silva C., Hrncir M. (2020) Adjustment of fuel loads in stingless bees (Melipona subnitida). J. Comp. Physiol. A 206, 85–94, https://doi.org/10.1007/s00359-019-01398-2
CAS
Article
Google Scholar
He X., Wang W., Qin Q., Zeng Z., Zhang S., Barron A.B. (2013) Assessment of flight activity and homing ability in Asian and European honey bee species, Apis cerana and Apis mellifera, measured with radio frequency tags. Apidologie 44, 38–51, https://doi.org/10.1007/s13592-012-0156-7
Article
Google Scholar
Heinrich B. (1980) Mechanisms of body-temperature regulation in honeybees, Apis mellifera II. Regulation of thoracic temperature at high air temperatures. J. Exp. Biol. 85, 73–87
Google Scholar
Heinrich B. (1993) The hot-blooded insects – strategies and mechanisms of thermoregulation. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-662-10340-1
Book
Google Scholar
Heinrich B., Buchmann S.L. (1986) Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta. J. Comp. Physiol. B 156, 557–562, https://doi.org/10.1007/BF00691042
Article
Google Scholar
Hrncir M., Jarau S., Zucchi R., Barth F.G. (2004) Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. J. Comp. Physiol. A 190, 549–560. https://doi.org/10.1007/s00359-004-0515-6
CAS
Article
Google Scholar
Hrncir M., Maia-Silva C., Teixeira-Souza V.H.S., Imperatriz-Fonseca V.L. (2019) Stingless bees and their adaptations to extreme environments. J. Comp. Physiol. A 205, 415–426, https://doi.org/10.1007/s00359-019-01327-3
Article
Google Scholar
Jørgensen L.B., Malte H., Overgaard J. (2019) How to assess Drosophila heat tolerance: Unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642, https://doi.org/10.1111/1365-2435.13279
Article
Google Scholar
Kingsolver J.G., MacLean H., Goddin S.B., Augustine K.E. (2016) Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. J. Exp. Biol. 219, 1290–1294, https://doi.org/10.1242/jeb.138321
Article
PubMed
Google Scholar
Klein S., Cabirol A., Devaud J.M., Barron A.B., Lihoreau M. (2017) Why bees are so vulnerable to environmental stressors. Trends Ecol. Evol. 32, 268–278, https://doi.org/10.1016/j.tree.2016.12.009
Article
PubMed
Google Scholar
Kovac H., Stabentheiner A., Hetz S.K., Petz M., Crailsheim K. (2007) Respiration of resting honeybees. J. Insect Physiol. 53, 1250v1261, https://doi.org/10.1016/j.jinsphys.2007.06.019
CAS
Article
Google Scholar
Kovac H., Käfer H., Stabentheiner A., Costa C. (2014) Metabolism and upper thermal limits of Apis mellifera carnica and A. m. ligustica. Apidologie 45, 664–677, https://doi.org/10.1007/s13592-014-0284-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Lighton J.R.B., Turner R.J. (2004) Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. J. Exp. Biol. 207, 1903-1913, https://doi.org/10.1242/jeb.00970
Article
PubMed
Google Scholar
Macieira O.J.D., Proni E.A. (2004) Capacidade de resistência a altas e baixas temperaturas em operárias de Scaptotrigona postica (Latreille) (Hymenoptera, Apidae) durante os períodos de verão e inverno. Rev. Bras. Zool. 21, 893–896, https://doi.org/10.1590/S0101-81752004000400025
Article
Google Scholar
Maia-Silva C., Hrncir M., Silva C.I., Imperatriz-Fonseca V.L. (2015) Survival strategies of stingless bees (Melipona subnitida) in an unpredictable environment, the Brazilian tropical dry forest. Apidologie 46, 631–643, https://doi.org/10.1007/s13592-015-0354-1
Article
Google Scholar
Maia-Silva C., Hrncir M., Imperatriz-Fonseca V.L., Schorkopf D.L.P. (2016) Stingless bees (Melipona subnitida) adjust brood production rather than foraging activity in response to changes in pollen stores. J. Comp. Physiol. A 202, 723–732, https://doi.org/10.1007/s00359-016-1095-y
Article
Google Scholar
Maia-Silva C., Limão A.A.C., Silva C.I., Imperatriz-Fonseca V.L., Hrncir M. (2020) Stingless bees (Melipona subnitida) overcome severe drought events in the Brazilian tropical dry forest by opting for high-profit food sources. Neotrop. Entomol., https://doi.org/10.1007/s13744-019-00756-8
Marengo J.A., Torres R.R., Alves L.M. (2017) Drought in Northeast Brazil – past, present, and future. Theor. Appl. Climatol. 129, 1189–1200, https://doi.org/10.1007/s00704-016-1840-8
Article
Google Scholar
Menezes C., Vollet-Neto A., Imperatriz-Fonseca V.L. (2013) An advance in the in vitro rearing of stingless bee queens. Apidologie 44, 491–500, https://doi.org/10.1007/s13592-013-0197-6
Article
Google Scholar
Mitchell J.D., Hewitt P.H., van der Linde T.C., De K. (1993) Critical thermal limits and temperature tolerance in the harvester termite Hodotermes mossambicus (Hagen). J. Insect Physiol. 39, 523–528. https://doi.org/10.1016/0022-1910(93)90085-6
Article
Google Scholar
Nicolson W.W., Louw G.N. (1982) Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J. Exp. Zool. 222, 287–296, https://doi.org/10.1002/jez.1402220311
Oyen K.J., Giri S., Dillon M.E. (2016) Altitudinal variation in bumble bee (Bombus) critical thermal limits. J. Therm. Biol. 59, 52–57, https://doi.org/10.1016/j.jtherbio.2016.04.015
Article
PubMed
Google Scholar
Pick R.A., Schlindwein C. (2011) Pollen partitioning of three species of Convolvulaceae among oligolectic bees in the Caatinga of Brazil. Plant Syst. Evol. 293, 147–159. https://doi.org/10.1007/s00606-011-0432-4.
Article
Google Scholar
Quirino Z., Machado I. (2014) Pollination syndromes in a Caatinga plant community in northeastern Brazil: seasonal availability of floral resources in different plant growth habits. Braz. J. Biol. 74:62–71, https://doi.org/10.1590/1519-6984.17212
CAS
Article
PubMed
Google Scholar
Reynolds A.M., Smith A.D., Reynolds D.R., Carreck N.L., Osborne J.L. (2007) Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J. Exp. Biol. 210, 3763–3770, https://doi.org/10.1242/jeb.009563
Article
PubMed
Google Scholar
Rezende E.L., Castañeda L.E., Santos M. (2014) Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809. https://doi.org/10.1111/1365-2435.12268
Article
Google Scholar
Roberts S.P., Harrison J.F. (1999) Mechanisms of thermal stability during flight in the honeybee Apis mellifera. J. Exp. Biol. 202, 1523–1533
PubMed
Google Scholar
Roberts S.P., Harrison J.F., Hadley N.F. (1998) Mechanisms of thermal balance in flying Centris pallida (Hymenoptera: Anthophoridae). J. Exp. Biol. 201, 2321–2331
CAS
PubMed
Google Scholar
Roubik D.W., Buchmann S.L. (1984) Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest. Oecologia 61, 1–10. https://doi.org/10.1007/BF00379082
Article
PubMed
Google Scholar
Silva A.G., Pinto R.S., Contrera F.A.L., Albuquerque P.M.C., Rêgo, M.M.C. (2014) Foraging distance of Melipona subnitida Ducke (Hymenoptera: Apidae). Sociobiology 61, 494–501. https://doi.org/10.13102/sociobiology.v61i4.494-501
Article
Google Scholar
Silva M.A., Ferreira N.S., Teixeira-Souza V.H.S., Maia-Silva C., Oliveira F.A., Hrncir M. (2017) On the thermal limits for the use of stingless bees as pollinators in commercial greenhouses. J. Apicult. Res. 56, 81-91, https://doi.org/10.1080/00218839.2016.1260380
Article
Google Scholar
Souza-Junior J.B.F., Teixeira-Souza V.H.S., Oliveira-Souza A., Oliveira P.F., Queiroz J.P.A.F., Hrncir M. (2020) Thermal stress constrains foraging distance of stingless bees (Melipona subnitida) in the Brazilian tropical dry forest. J. Insect Physiol. under revision
Terblanche J.S., Hoffmann A.A., Mitchell K.A., Rako L., le Roux P.C., Chown S.L. (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725, https://doi.org/10.1242/jeb.061283
Article
PubMed
Google Scholar
Willmer P.G. (1983) Thermal constraints on activity patterns in nectar-feeding insects. Ecol. Entomol. 8, 455–469, https://doi.org/10.1111/j.1365-2311.1983.tb00524.x
Article
Google Scholar
Willmer P.G. (1986) Foraging patterns and water balance: problems of optimization for a xerophilic bee, Chalicodoma sicula. J. Anim. Ecol. 55, 941–962. https://doi.org/10.2307/4426
Article
Google Scholar
Willmer P.G., Stone G.N. (1997) Temperature and water relations in desert bees. J. Therm. Biol. 22, 453–465, https://doi.org/10.1016/S0306-4565(97)00064-8
Article
Google Scholar
Willmer P.G., Stone G.N. (2004) Behavioral, ecological, and physiological determinants of the activity patterns of bees. Adv. Study Behav. 34, 347–466, https://doi.org/10.1016/S0065-3454(04)34009-X
Article
Google Scholar
Woodgate J.L., Makinson J.C., Lim K.S., Reynolds A.M., Chittka L. (2016) Life-long radar tracking of bumblebees. P.L.o.S. ONE 11, e0160333, https://doi.org/10.1371/journal.pone.0160333
CAS
Article
Google Scholar