Abdelkader, F.B., Kairo, G., Tchamitchian, S., Cousin, M., Senechal, J., Crauser, D., Vermande, J.P., Aluax, C., Le Conte, Y., Belzunces, L.P., Barbouche, N., Brunet, J.L. (2014) Semen quality of honey bee drones maintained from emergence to sexual maturity under laboratory, semi-field and field conditions. Apidologie 45, 215–223.
Google Scholar
Abou-Shaara, H.F., Owayss, A.A., Ibrahim, Y.Y., Basuny, N.K. (2017) A review of impacts of temperature and relative humidity on various activities of honey bees. Insect. Soc. 64, 445–463.
Google Scholar
Aliouane, Y., El Hassani, A.K., Gary, V., Armengaud, C., Lambin, M., Gauthier, M. (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ. Toxicol. 28, 113–122.
CAS
Google Scholar
Amiri, E., Strand, M.K., Rueppell, O., Tarpy, D.R. (2017) Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health. Insects. 8. https://doi.org/10.3390/insects8020048
PubMed Central
Google Scholar
Baer, B. (2005) Sexual selection in Apis bees. Apidologie 36, 187–200.
Google Scholar
Baer, B., Heazlewood, J.L., Taylor, N.L., Eubel, H., Millar, A.H. (2009) The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 9, 2085–2097.
CAS
PubMed
Google Scholar
Baudry, E., Solignac, M., Garnery, L., Gries, M., Cornuet, J.M., Koeniger, N. (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc. R. Soc. B Biol. Sci. 265, 2009–2014.
Google Scholar
Berg, S. (1991) Investigation on rates of large and small drones at a drone congregation area. Apidologie 22, 437–438.
Google Scholar
Berg, S., Koeniger, N., Koeniger, G., Fuchs, S. (1997) Body size and reproductive success of drones (Apis mellifera L.). Apidologie 28, 449–460.
Google Scholar
Bieńkowska, M., Panasiuk, B., Węgryznowicz, P., Gerula, D. (2011) The effect of different thermal conditions on drone semen quality and number of spermatozoa entering the spermatheca of queen bee. J. Apic. Sci. 55, 161–168.
Google Scholar
Bishop, G.H. (1920) Fertilization in The Honey-Bee I. The male sexual organs: their histological structure and physiological functioning. J. Exp. Zool. 31, 225–264.
Google Scholar
Boes, K.E. (2010) Honeybee colony drone production and maintenance in accordance with environmental factors: an interplay of queen and worker decisions. Insect. Soc. 57, 1–9.
Google Scholar
Boncristiani, H., Underwood, R., Schwarz, R., Evans, J.D., Pettis, J., vanEngelsdorp, D. (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol. 58, 613–620.
CAS
PubMed
Google Scholar
Boomsma, J.J., Baer, B., Heinze, J. (2005) The evolution of male traits in social insects. Annu. Rev. Entomol. 50, 395–420.
CAS
PubMed
Google Scholar
Brandstaetter, A.S., Bastin, F., Sandoz, J-C. (2014) Honeybee drones are attracted by groups of consexuals in a walking simulator. J. Exp. Biol. 217, 1278–1285.
PubMed
Google Scholar
Brutscher, L.M., Baer, B., Niño, E.L. (2019) Putative drone copulation factors regulating honey bee (Apis mellifera) queen reproduction and health: A review. Insects 10, 8.
PubMed Central
Google Scholar
Burley, L.M. (2007) The effects of miticides on the reproductive physiology of honey bee (Apis mellifera L.) queens and drones. Master’s thesis. Virginia Polytechnic Institute.
Burley, L.M., Fell, R.D., Saacke, R.G. (2008) Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. J. Econ. Entomol. 101, 1081–1087.
PubMed
Google Scholar
Ciereszko, A., Wilde, J., Dietrich, G.J., Siuda, M., Bak, B., Judycka, S., Karol, H. (2017) Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie 48, 211–222.
CAS
Google Scholar
Cobey, S.W. (2007) Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 38, 390–410.
Google Scholar
Collins, A.M. (2000) Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 31, 421–429.
Google Scholar
Collins, A.M., Pettis, J.S. (2001) Effect of Varroa infestation on semen quality. Am. Bee J. 141, 590–593.
Google Scholar
Collins, A.M., Pettis, J.S., Wilbanks, R., Feldlaufer, M.F. (2004) Performance of honey bee (Apis mellifera) queens reared in beeswax cells impregnated with coumaphos. J. Apic. Res. 43, 128–134.
CAS
Google Scholar
Collison, C.H. (2004) Basics of Beekeeping. The University of Pennsylvania, University Park.
Google Scholar
Corta, E., Bakkali, A., Berrueta, L.A., Gallo, B., Vicente, F., Kilchenmann, V., Bogdanov, S. (2000) Study of the degradation products of bromopropylate, chlordimeform, coumaphos, cymiazole, flumethrin and tau-fluvalinate in aqueous media. Talanta 52, 169–180.
CAS
PubMed
Google Scholar
Couvillon, M.J., Hughes, W.O.H., Perez-Sat, J.A., Martin, S.J., Roy, G.G.F., Ratnieks, F.L.W. (2010) Sexual selection in honey bee: colony variation and the importance of size in male mating success. Behav. Ecol. 21, 520–525.
Google Scholar
Czekońska, K., Chuda-Mickiewicz, B., Chorbiski, P. (2013a) The influence of age of honey bee (Apis mellifera) drones on volume of semen and viability of spermatozoa. J. Apic. Sci. 57, 61–66.
Google Scholar
Czekońska, K., Chuda-Mickiewicz, B., Chorbiński, P. (2013b) The effect of brood incubation temperature on the reproductive value of honey bee (Apis mellifera) drones. J. Apic. Res. 52, 96–105.
Google Scholar
Czekońska, K., Chuda-Mickiewicz, B., Samborski, J. (2015) Quality of honeybee drones reared in colonies with limited and unlimited access to pollen. Apidologie 46, 1–9.
Google Scholar
De Guzman, L.I., Rinderer, T.E., Lancaster, V.A., Delatte, G.T., Stelzer, A. (1999) Varroa in the mating yard: III. The effects of formic acid gel formulation on drone production. Am. Bee J. 139, 304–307.
Google Scholar
DeGrandi-Hoffman, G., Spivak, M., Martin, J.H. (1993) Role of thermoregulation by nestmates on the development time of honey bee (Hymenoptera: Apidae) queens. Ann. Entomol. Soc. Am. 86, 165–172.
Google Scholar
DeGrandi-Hoffman, G., Watkins, J.C., Collins, A.M., Loper, G.M., Martin, J.H., Arias, M.C., Sheppard, W.S. (1998) Queen developmental time as a factor in the Africanization of European honey bee (Hymenoptera: Apidae) populations. Ann. Entomol. Soc. Am. 91, 52–58.
Google Scholar
Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F. (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS 110, 18466–18471.
PubMed
Google Scholar
Duay, P., De Jong, D., Engels, W. (2002) Decreased flight performance and sperm production in drones of the honeybee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development. Genet. Mol. Res. 1, 227–232.
PubMed
Google Scholar
Elzen, P.J., Westervelt, D. (2002) Detection of coumaphos resistance in Varroa destructor in Florida. Am. Bee J. 142, 291–292.
Google Scholar
Elzen, P.J., Baxter, J.R., Spivak, M., Wilson, W.T. (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31, 437–441.
CAS
Google Scholar
Estoup, A., Garnery, L., Solignac, M., Cornuet, J.M. (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140, 679–695.
CAS
PubMed
PubMed Central
Google Scholar
Fahrenholz, L., Lamprecht, I., Schricker, B. (1992) Calorimetric investigations of the different bee castes of honey bees, Apis mellifera carnica. J. Comp. Physiol. B. 162, 119–130.
Google Scholar
Fell, R.D., Tignor, K. (2001) Miticide effects on the reproductive physiology of queens and drones. Am. Bee J. 141, 888–889.
Google Scholar
Fisher II, A., Rangel, J. (2018) Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS ONE 13, e0208630.
PubMed
PubMed Central
Google Scholar
Fisher II, A., Harrison, K., Love, C., Varner, D., Rangel, J. (2018) Spatio-temporal variation in viability of spermatozoa of honey bee, Apis mellifera, drones in central Texas apiaries. Southwest. Entomol. 43, 343–356.
Google Scholar
Free, J.B. (1987) Pheromones of Social Bees. Comstock Press, Ithaca.
Google Scholar
Galindo-Cardona A., Monmany, A.C., Moreno-Jackson, R., Rivera-Rivera, C., Huertas-Dones, C., Caicedo-Quiroga, L., Giray, T. (2012) Landscape analysis of drone congregation areas of the honey bee, Apis mellifera. J. Insect Sci. 12, 1–15.
Google Scholar
Galindo-Cardona, A., Monmany, A.C., Diaz, G., Giray, T. (2015) A landscape analysis to understand orientation of honey bee (Hymenoptera: Apidae) drones in Puerto Rico. Environ. Entomol. 44, 1139–1148.
CAS
PubMed
Google Scholar
Gençer, H.V., Firatli, Ç. (2005) Reproductive and morphological comparisons of drones reared in queenright and laying worker colonies. J. Apic. Res. 44, 163–167.
Google Scholar
Goins, A., Schneider, S.S. (2013) Drone “quality” and caste interactions in the honey bee, Apis mellifera L. Insect. Soc. 60, 453–461.
Google Scholar
Grassl, J., Peng, Y., Baer-Imhoof, B., Welch, M., Millar, A.H., Baer, B. (2017) Infections with the sexually transmitted pathogen Nosema apis trigger an immune response in the seminal fluid of honey bees (Apis mellifera). J. Proteome Res. 16, 319–334.
CAS
PubMed
Google Scholar
Gries, M., Koeniger, N. (1996). Straight forward to the queen: pursuing honeybee drones (Apis mellifera L.) adjust their body axis to the direction of the queen. J. Comp. Physiol. A. 179, 539–544.
Google Scholar
Haarmann, T., Spivak, M., Weaver, D., Weaver, B., Glenn, T. (2002) Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. J. Econ. Entomol. 95, 28–35.
CAS
PubMed
Google Scholar
Hendriksma, H.P., Callis, J.N.M., Boot, W.J. (2004) Stimulating natural supersedure of honeybee queens, Apis mellifera. Proc. Neth. Soc. Entomol. 15, 29–33.
Google Scholar
Hoage, T.R., Kessel, R.G. (1968) An electron microscope study of the process of differentiation during spermatogenesis in the drone honey bee (Apis mellifera L.) with special reference to centriole replication and elimination. J. Ultrastruct. Res. 24, 6–32.
CAS
PubMed
Google Scholar
Holldobler, B., Bartz, S.H. (1985) Sociobiology of reproduction in ants. Prog. Zool. 31, 237–257.
Google Scholar
Hrassnigg, N., Crailsheim, K. (2005) Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie 36, 255–277.
Google Scholar
Jaffé, R., Moritz, R.F.A. (2010) Mating flights select for symmetry in honeybee drones (Apis mellifera). Naturwissenschaften 97, 337–343.
PubMed
Google Scholar
Jaycox, E.R. (1961) The effects of various foods and temperatures on sexual maturity of the drone honey bee (Apis mellifera). Ann. Entomol. Soc. Am. 54, 519–523.
Google Scholar
Johnson, R.M., Ellis M.D., Mullin, C.A., Frazier, M. (2010) Pesticides and honey bee toxicity – USA. Apidologie 41, 312–331.
CAS
Google Scholar
Johnson, R.M., Dalhlgren, L., Siegfried, B.D., Ellis, M.D. (2013) Effect of in-hive miticides on drone honey bee survival and sperm viability. J. Apic. Res. 52, 88–95.
CAS
Google Scholar
Kairo, G., Provost, B., Tchamitchian, S., Abdelkader, F.B., Bonnet, M., Cousin, M., Senechal, J., Benet, P., Kretzschmar, A., Belzunces, L.P., Brunet, J.L. (2016) Drone exposure to the systemic insecticide fipronil indirectly impairs queen reproductive potential. Sci. Rep. 6, 31904 doi: https://doi.org/10.1038/srep31904.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kairo, G., Poquet, Y., Haji, H., Tchamitchian, S., Cousin, M., Bonnet, M., Pelissier, M., Kretzschmar, A., Belzunces, L.P., Brunet, J.L. (2017a) Assessment of the toxic effects of pesticides on honey bee drone fertility using laboratory and semifield approaches: a case study of fipronil. Environ. Toxicol. Chem. 36, 2345–2351.
CAS
PubMed
Google Scholar
Kairo, G., Biron, D.G., Abdelkader, F.B., Bonnet, M., Tchamitchian, S., Cousin, M., Dussaubat, C., Benoit, B., Kretzschmar, A., Belzunces, L.P., Brunet, J.L. (2017b) Nosema ceranae, fipronil and their combination compromise honey bee reproduction via changes in male physiology. Sci. Rep. 7, 8556. doi: https://doi.org/10.1038/s41598-017-08380-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
King, M., Eubel, H., Millar, A.H., Baer, B. (2011) Proteins within the seminal fluid are crucial to keep sperm viable in the honeybee Apis mellifera. J. Insect Physiol. 57, 409–414.
CAS
PubMed
Google Scholar
Koeniger, G. (1990) The role of the mating sign in honey bees, Apis mellifera L.: does it hinder or promote multiple mating? Anim. Behav. 39, 444–449.
Google Scholar
Koeniger, N.,Koeniger, G. (2004) Mating behavior in honey bees (genus Apis). Trop. Agric. Res. Ext. 7, 13–28.
Google Scholar
Koeniger, N., Koeniger, G., Gries, M., Tingek, S. (2005a) Drone competition at drone congregation areas in four Apis species. Apidologie 36, 211–221.
Google Scholar
Koeniger, N., Koeniger, G., Pechhacker, H. (2005b) The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insect. Soc. 52, 31–35.
Google Scholar
Kulhanek, K., Steinhauer, N., Rennich, K., Caron, D.M., Sagili, R.R., Pettis, J.S., Ellis, J.D., Wilson, M.E., Wilkes, J.T., Tarpy, D.R., Rose, R., Lee, K., Rangel, J., vanEngelsdorp, D. (2017) A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56, 328–340.
Google Scholar
Kumar, N.R., Kaur, N. (2003) Seasonal influence on physico-chemical characteristics of honey bee semen. J. Appl. Zool. Res. 14, 191–192.
Google Scholar
Locke, S.J., Peng, Y.S. (1993) The effects of drone age, semen storage and contamination on semen quality in the honeybee (Apis mellifera). Physiol. Entomol. 18, 144–148.
Google Scholar
Lodesani, M., Colombo, M., & Spreafico, M. (1995). Ineffectiveness of Apistan treatment against the mite Varroa jacobsoni Oud in several districts of Lombardy (Italy). Apidologie, 26, 67–72. https://doi.org/10.1051/apido:19950109
Google Scholar
Loper, G.M., Wolf, W.W., Taylor, O.R. (1987) Detection and monitoring of honeybee drone congregation areas by radar. Apidologie 18, 163–172.
Google Scholar
Loper, G.M., Wolf, W.W., Taylor, O.R. (1992) Honey-bee drone flyways and congregation areas – radar observations. J. Kansas Entomol. Soc. 65, 223–230.
Google Scholar
Mackensen, O. (1955) Experiments in the technique of artificial insemination of queen bees. J. Econ. Entomol. 48, 418–421.
Google Scholar
Mackensen, O., Roberts, W.C. (1948) A manual for the artificial insemination of queen bees. USDA. Bureau of Entomology and Plant Quarantine, ET-250, 1–33.
Google Scholar
Metz, B.N., Tarpy, D.R. (2019) Reproductive senescence in drones of the honey bee (Apis mellifera). Insects 10, 11.
PubMed Central
Google Scholar
Moritz, R.F.A. (1989) The instrumental insemination of the queen bee. Apimondia Publishing House, Bucharest, 22–28.
Google Scholar
Mullins, C.A., Frazier, M., Frazier, J.L., Ashcroft, S., Simonds, R., vanEngelsdorp, D., Pettis, JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5, e9754.
Google Scholar
Nguyen, V.N. (1995) Effects of protein nutrition and pollen supplementation of honeybee (Apis mellifera L.) colonies on characteristics of drones with particular reference to sexual maturity. MSc (Honours) thesis, University of Western Sydney, Hawkesbury, NSW, Australia.
Ostiguy, N., Drummond, F.A., Aronstein, K., Eitzer, B., Ellis, J.D., Spivak, M., Sheppard, W.S. (2019) Honey bee exposure to pesticides: a four-year nationwide study. Insects 10, 13.
PubMed Central
Google Scholar
Page, R.E. (1981) Protandrous Reproduction in Honey Bees. Environ. Entomol. 10, 359–362.
Google Scholar
Page, R.E. (1986) Sperm utilization in social insects. Annu. Rev. Entomol. 31, 297–320.
Google Scholar
Page, R.E., Peng, C.Y. (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 60, 289–310.
Google Scholar
Palmer, K.A., Oldroyd, B.P. (2000) Evolution of multiple mating in the genus Apis. Apidologie 31, 235–248.
Google Scholar
Peng, Y., Grassl, J., Millar, A.H., Baer, B. (2016) Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis. Proc. R. Soc. Lond. Biol. Sci. 283(1823), 20151785.
Google Scholar
Pettis, J.S., Wilson, W.T., Shimanuki, H., Teel, P.D. (1991) Fluvalinate treatment of queen and worker honey bees (Apis mellifera L) and effects on subsequent mortality, queen acceptance and supersedure. Apidologie 22, 1–7.
CAS
Google Scholar
Pettis, J.S., Collins, A.M., Wilbanks, R., Feldlaufer, M.F. (2004) Effects of coumaphos on queen rearing in the honey bee, Apis mellifera. Apidologie 35, 605–610.
CAS
Google Scholar
Pettis, J.S., Rice, N., Joselow, K., vanEngelsdorp, D., Chaimnaee, V. (2016) Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PLoS ONE 11, 1–10.
Google Scholar
Rangel, J., Tarpy, D.R. (2015) The combined effects of miticides on the mating health of honey bee (Apis mellifera L.) queens. J. Apic. Res. 54, 275–283.
Google Scholar
Rangel, J., Tarpy, D.R. (2016) In-hive miticides and their effect on queen supersedure and colony growth in the honey bee (Apis mellifera). J. Environ. Anal. Toxicol.. 6, 377.
Google Scholar
Rangel, J., Keller, J.J., Tarpy, D.R. (2013) The effects of honey bee (Apis mellifera L.) queen reproductive potential on colony growth. Insect. Soc. 60, 65–73.
Google Scholar
Rhodes, J.W. (2002) Drone honey bees: rearing and maintenance. Agnote DAI 112
Rhodes, J.W. (2008) Semen production in drone honeybees [online]. Publication No. 08/130. Rural Industries Research and Development Corporation, Barton, Australia. Available from https://rirdc.infoservices.com.au/items/08-130. Accessed 5 June 2018
Rhodes, J.W., Harden, S., Spooner-Hart, R., Andersen, D.L., Wheen, G. (2011) Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42, 29–38.
Google Scholar
Rinderer, T.E., De Guzman, L.I., Lancaster, V.A., Delatte, G.T., Seltzer, J.A. (1999) Varroa in the Mating Yard: I. The Effects of Varroa jacobsoni and Apistan® on Drone Honey Bees. Am. Bee J. 134–139
Roberts, W.C. (1944) Multiple mating of queen bees proved by progeny and flight tests. Glean. Bee Cult. 72, 255–260.
Google Scholar
Rosenkranz, P., Aumeier, P., Ziegelmann, B. (2010) Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119.
PubMed
Google Scholar
Rousseau, A., Giovenazzo, P. (2015) Optimizing drone fertility with spring nutritional supplements to honey bee (Hymenoptera: Apidae) colonies. J. Econ. Entomol. 109, 1009–1014.
Google Scholar
Rousseau, A., Fournier, V., Giovenazzo, P. (2015) Apis mellifera (Hymenoptera: Apidae) drone sperm quality in relation to age, genetic line, and time of breeding. Can. Entomol. 147, 702–711.
Google Scholar
Rowland, C.M., McLellan, A.R. (1987) Seasonal changes of drone numbers in a colony of the honeybee, Apis mellifera. Ecol. Model. 37, 155–166.
Google Scholar
Ruttner, F., Koeniger, G. (1971) Die füllung der spermatheka der bienenkönigin. Z. Vgl. Physiol. 72, 411–422.
Google Scholar
Sandrock, C., Tanadini, M., Tanadini, L.G., Fauser-Misslin, A., Potts, S.G., Neumann, P. (2014) Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9, e103592.
PubMed
PubMed Central
Google Scholar
Schlüns, H., Schlüns, E.A., van Praagh, J., Moritz, R.F.A. (2003) Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie 34, 577–584.
Google Scholar
Schneider, C.W., Tautz, J., Grünewald, B., Fuchs, S. (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 7, e30023. doi: https://doi.org/10.1371/journal.pone.0030023.
CAS
Article
PubMed
PubMed Central
Google Scholar
Seeley, T.D., Morse, R.A. (1976) The nest of the honey bee (Apis mellifera L.). Insect. Soc. 23, 495–512.
Google Scholar
Shoukry, R.S., Khattaby, A.M., El-Sheakh, A.A., Abo-Ghalia, A.H., Elbanna, S.M. (2013) Effect of some materials for controlling varroa mite on the honeybee drones (Apis mellifera L.). Egypt. J. Agric. Res. 91, 825–834.
Google Scholar
Slone, J.D., Stout, T.L., Huang, Z.Y., Schneider, S.S. (2012) The influence of drone physical condition on the likelihood of receiving vibration signals from worker honey bees, Apis mellifera. Insect. Soc. 59, 101–107.
Google Scholar
Smith, M.L., Ostwald, M.M., Loftus, J.C., Seely, T.D. (2014) A critical number of workers in a honeybee colony triggers investment in reproduction. Naturwissenschaften 101, 783–790.
CAS
PubMed
Google Scholar
Snodgrass, R.E. (1956) Anatomy of the Honey Bee. Cornell University Press, Ithaca, pp. 290–298.
Google Scholar
Straub, L., Villamar-Bouza, L., Bruckner, S., Chantawannakul, P., Gauthier, L., Khongphinitbunjong, K., Retschnig, G., Troxler, A., Vidondo, B., Neumann, P., Williams, G.R. (2016) Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. Lond. Biol. Sci. 283, 20160506.
PubMed
Google Scholar
Stürup, M., Baer-Inhoof, B., Nash, D.R., Boomsma, J.J., Baer, B. (2013) When every sperm counts: factors affecting male fertility in the honey bee Apis mellifera. Behav. Ecol. 24, 1192–1198.
Google Scholar
Szentgyörgyi, H., Czekońska, K., Tofilski, A. (2017) The effects of starvation of honey bee larvae on reproductive quality and wing asymmetry of honey bee drones. J. Apic. Sci. 61, 233–243.
Google Scholar
Taha E.L.K.A., Alqarni A.S. (2013) Morphometric and reproductive organs characters of Apis mellifera jemenitica drones in comparison to Apis mellifera carnica. Int. J. Sci. Eng. Res. 4, 411–415.
Google Scholar
Tarpy, D.R., Page, R.E. (2000) No behavioral control over mating frequency in queen honey bees (Apis mellifera L.): implications for the evolution of extreme polyandry. Am. Nat. 155, 820–827.
CAS
PubMed
Google Scholar
Tofilski, A., Kopel, J. (1996) The influence of Nosema apis on maturation and flight activity of honey bee drones. Pszcz. Zesz. Nauk. 40, 55–60.
Google Scholar
Traynor, K.S., Pettis, J.S., Tarpy, D.R., Mullin, C.A., Frazier, J.L., Frazier, M. (2016) In-hive pesticide exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the eastern United States. Sci. Rep. 6, 33207.
CAS
PubMed
PubMed Central
Google Scholar
Villar, G., Wolfson, M.D., Hefetz, A., Grozinger, C.M. (2018) Evaluating the Role of Drone-Produced Chemical Signals in Mediating Social Interactions in Honey Bees (Apis mellifera). J. Chem. Ecol. 44, 1–8.
CAS
PubMed
Google Scholar
Williams, G., Troxler, A., Retschnig, G., Roth, K., Yañez, O., Shutler, D., Neumann, P., Gauthier, L. (2015) Neonicotinoid pesticides severely affect honey bee queens. Sci. Rep. 5, 14621.
CAS
PubMed
PubMed Central
Google Scholar
Wilson, E.O. (1971). The Insect Societies. Harvard University Press, Cambridge.
Google Scholar
Winston, M.L. (1987) The Biology of the Honey Bee. Harvard University Press, Cambridge.
Google Scholar
Woyke, J. (1960) Naturalne i sztuczne unasienianie matek pszczelich. Pszcz. Zesz. Nauk. 4, 183-275.
Google Scholar
Woyke, J. (1962) Natural and artificial insemination of queen bees. Bee World 43, 21–25.
Google Scholar
Woyke, J. (1983) Dynamics of entry of spermatozoa into the spermatheca of instrumentally inseminated queen honey bees. J. Apic. Res. 22, 150–154.
Google Scholar
Woyke, J. (2008) Why the eversion of the endophallus of honey bee drone stops at the partly everted stage and significance of this. Apidologie 39, 627–636.
Google Scholar
Woyke, J., Jasiński Z. (1978) Influence of age of drones on the results of instrumental insemination of honeybee queens. Apidologie 9, 203–212.
Google Scholar
Woyke J., Ruttner, F. (1958) An anatomical study of the mating process in honey bee. Bee World 39, 3–18.
Google Scholar
Woyke J., Ruttner F. (1976) Results. In: Ruttner F. (Ed.) The Instrumental Insemination of the Queen Bee. Apimondia, Bucharest, 87–92.
Google Scholar
Zaitoun S., Al-Majeed Al-Ghzawi A., Kridli R. (2009) Monthly changes in various drone characteristics of Apis mellifera ligustica and Apis mellifera syriaca. Entomol. Sci. 12, 208–214.
Google Scholar