Advertisement

Apidologie

, Volume 50, Issue 4, pp 564–577 | Cite as

Effects of Chlorella sp. on biological characteristics of the honey bee Apis mellifera

  • Tomáš Jehlík
  • Dalibor Kodrík
  • Václav Krištůfek
  • Justina Koubová
  • Michala Sábová
  • Jiří Danihlík
  • Aleš Tomčala
  • Radmila Čapková FrydrychováEmail author
Original article
  • 134 Downloads

Abstract

We tested the effect of Chlorella sorokiniana, a green, unicellular, freshwater alga, provided as a food supplement on several biological characteristics of the honey bee Apis mellifera. Chlorella was applied as (1) a moisturized powder, (2) a sugar-water solution, or (3) mixed with honey-sugar candy. All three applications were well accepted by the bees. We observed a positive effect of Chlorella on colony development, and also on basic aspects of metabolism, such as increased fat deposition and vitellogenin transcript levels, and a decrease in TOR and InR2 transcript levels. The effect of Chlorella on other characteristics was lower (protein levels) or even null (total fat body mass, level of adipokinetic hormone). Application of Chlorella modulated the hypopharyngeal gland size, and the activity of basic digestive enzymes in the bee midgut. Our observations suggest that the nutritional composition of Chlorella might be an appropriate dietary supplement for honey bees.

Keywords

A. mellifera chlorella nutrients longevity AKH 

Notes

Acknowledgements

The authors thank Mrs. H. Štěrbová for her technical assistance. The English grammar and stylistics were checked by the Editage Author Services.

Authors’ contribution

RČF, DK, and TJ conceived this research and designed experiments; TJ participated in the design and interpretation of the data; TJ, JK, MS, AT, VK, and JD performed experiments and analysis; RČF and DK wrote the paper and participated in the revisions of it. All authors read and approved the final manuscript.

Funding information

This study was supported by grant no. LTAUSA17116 Inter Action from Ministry of Education of the Czech Republic, by project Strategy AV21, Diversity of Life and Health of Ecosystems.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2019_670_Fig8_ESM.png (27 kb)
Fig. S1.

The effect of Chlorella on percentage of fatty acids (FAs) in the larval fat body (see Fig. 2). Referred FAs: myristic (14:0), palmitic (16:0), palmitoleic (16:1), margaric (17:0), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3). Student’s test (*p < 5%; n = 5), where “n” is a number of individuals for each tested group). (PNG 27 kb)

13592_2019_670_MOESM1_ESM.tif (63 kb)
High resolution image (TIF 62 kb)
13592_2019_670_Fig9_ESM.png (86 kb)
Fig. S2.

The effect of Chlorella on adipokinetic hormone level in the adult worker CNS. Student’s test (no statistical significance); n = 9–10, where “n” is a number of individuals for each tested group). (PNG 85 kb)

13592_2019_670_MOESM2_ESM.tif (167 kb)
High resolution image (TIF 166 kb)
13592_2019_670_MOESM3_ESM.docx (13 kb)
Supplementary Table 1. (DOCX 12 kb)

References

  1. Altintas, O., Park, S., Lee, S. V. (2016) The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 49, 81–92CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amdam, G.V., Omholt, S.W. (2002) The regulatory anatomy of honeybee lifespan. J. Theor. Biol. 216, 209–228CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antikainen, H., Driscoll, M., Haspel, G., Dobrowolski, R. (2017) TOR-mediated regulation of metabolism in aging. Aging Cell 16, 1219–1233CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arrese, E.L. and Wells, M.A. (1994) Purification and properties of a phosphorylatable triacylglycerol lipase from the fat body of an insect, Manduca sexta. J Lipid Res 35, 1652–1660. Google Scholar
  5. Aurori, C.M., Buttstedt, A., Dezmirean, D.S., Liviu, A.M., Moritz, R.F.A., Erler, S. (2014) What is the main friver of sgeing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin? J. Gerontol. Biol. Sci. 69, 633–639CrossRefGoogle Scholar
  6. Avni, D., Hendriksma, H.P., Dag, A., Uni, Z., Shafir, S. (2014) Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean. J. Insect Physiol. 69, 65–73CrossRefPubMedGoogle Scholar
  7. Bartke, A., 2008. Insulin and aging. Cell Cycle 7, 3338–3343. doi: https://doi.org/10.4161/cc.7.21.7012 CrossRefPubMedGoogle Scholar
  8. Brodschneider, R., et al. (2018) Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457CrossRefGoogle Scholar
  9. DeGrandi-Hoffman, G., Chen, Y., Huang, E., Huang, M.H. (2010). The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56, 1184–1191CrossRefPubMedGoogle Scholar
  10. DeGrandi-Hoffman, G., Gage, S.L., Corby-Harris, V., Carroll, M., Chambers, et al. (2018). Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. J. Insect Physiol. 109, 114–124CrossRefPubMedGoogle Scholar
  11. Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L.P., Decourtye, A., et al. (2013) Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS One 8, 1–13Google Scholar
  12. Downer R.G.H. (1985). Lipid metabolism. Pp. 77–113 in G.A.Kerkut and L.I. Gilbert, eds. Comprehensive Insect Bio-chemistry, Physiology and Pharmacology. Vol. 10. Pergamon, Oxford.Google Scholar
  13. Eremia, N., Zagareanu, A., Mardari, T., Modvala, S. (2013) Stimulation of Resistance of Bee Families during Wintering. Anim. Sci. Biotechnol. 46, 268–271Google Scholar
  14. Havukainen, H., Munch, D., Baumann, A., Zhong, S., Halskau, O., et al. (2013) Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen. J. Biol. Chem. 288, 28369–28381CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hsieh, Y.S., Hsu, C.Y. (2011) The changes of age-related molecules in the trophocytes and fat cells of queen honeybees (Apis mellifera). Apidologie 42, 728–739CrossRefGoogle Scholar
  16. Hsu, C., Chuang, Y., Chan, Y. (2014) Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera). EXG 50, 128–136Google Scholar
  17. Kenyon, C. (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos. Trans. R. Soc. B Biol. Sci. 366, 9–16CrossRefGoogle Scholar
  18. Kodrík, D., Socha, R., Šimek, P., Zemek, R., Goldsworthy, G.J. (2000) A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera). Insect Biochem. Mol. Biol. 30, 489–498CrossRefPubMedGoogle Scholar
  19. Kodrík D. (2008) Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol. 33, 171–180. Google Scholar
  20. Kodrík, D., Vinokurov, K., Tomčala, A., Socha, R. (2012) The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera). J. Insect Physiol. 58, 194–204CrossRefPubMedGoogle Scholar
  21. Kodrík D.,  Bednářová D., Zemanová Z.,  Krishnan N., (2015) Hormonal Regulation of Response to Oxidative Stress in Insects—An Update. International Journal of Molecular Sciences 16(10), 25788–25816Google Scholar
  22. Lorenz M.W.,  Kellner R., Woodring J.,  Hoffmann K.H.,  Gäde G., (1999) Hypertrehalosaemic peptides in the honeybee (Apis mellifera): purification, identification and function. Journal of Insect Physiology 45(7), 647–653Google Scholar
  23. Lorenz, M.W. (2001). Synthesis of lipid in the fat body of Gryllus bimaculatus: age–dependency and regulation by adipokinetic hormone. Arch Insect Biochem Physiol. 47, 198–214Google Scholar
  24. Libbrecht, R., Corona, M., Wende, F., Azevedo, D.O., Serrao, J.E., Keller, L. (2013). Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl. Acad. Sci. 110, 11050–11055CrossRefPubMedGoogle Scholar
  25. Marchal, E., Schellens, S., Monjon, E., Bruyninckx, E., Marco, H.G. et al. (2018). Analysis of peptide ligand specificity of different insect adipokinetic hormone receptors. Int. J. Mol. Sci. 19 Google Scholar
  26. Münch, D., Amdam, G. V. (2010) The curious case of aging plasticity in honey bees. FEBS Lett. 584, 2496–2503CrossRefPubMedGoogle Scholar
  27. Mutti, N.S., Dolezal, A.G., Wolschin, F., Mutti, J.S., Gill, K.S., Amdam, G. V. (2011). IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. 214, 3977–3984CrossRefPubMedPubMedCentralGoogle Scholar
  28. Naug, D., Gibbs, A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40, 595–599CrossRefGoogle Scholar
  29. Neumann, P., Carreck, N.L. (2010). Honey bee colony losses. J. Apic. Res. 49, 1–6CrossRefGoogle Scholar
  30. Omar, E., Abd-Ella, A.A., Khodairy, M.M., Moosbeckhofer, R., Crailsheim, K., Brodschneider, R.(2017) Influence of different pollen diets on the development of hypopharyngeal glands and size of acid gland sacs in caged honey bees (Apis mellifera). Apidologie 48, 425–436CrossRefGoogle Scholar
  31. Patel, A., Fondrk, M.K., Kaftanoglu, O., Emore, C., Hunt, G., Frederick, K., Amdam, G. V. (2007) The making of a queen: TOR pathway is a key player in diphenic caste development. PLoS One 1–7.Google Scholar
  32. Peng, Y., D’Antuono, M., Manning, R. (2012) Effects of pollen and artificial diets on the hypopharyngeal glands of newly hatched bees (Apis mellifera L.). J. Apic. Res. 51, 53–62CrossRefGoogle Scholar
  33. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., et al. (2010) Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schneedorferová, I., Tomčala, A., Valterová, I. (2015) Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues. Food Chem. 176, 205–211CrossRefPubMedGoogle Scholar
  35. Schneider, M., Dorn, A. (1994) Lipid storage and mobilization by flight in relation to phase and age of Schistocerca gregaria females. Insect Biochem. Mol. Biol. 24, 883–889CrossRefGoogle Scholar
  36. Socha, R., Kodrík, D., Šimek, P., Patočková, M. (2004) The kind of AKH-mobilized energy substrates in insects can be predicted without a knowledge of the hormone structure. Eur. J. Entomol. 101, 1210–5759Google Scholar
  37. Standifer, L.N., Moeller, F.E., Kauffeld, N.M., Herbert, E. W. J, Shimanuki, H. (1978). Supplemental feeding of honey bee colonies. United States Dep. Agric. Agric. Inf. Bull. 413, 1–8Google Scholar
  38. Stanfel, M.N., Shamieh, L.S., Kaeberlein, M., K, K.B. (2009). The TOR pathway comes of age. Biochim. Biophys. Acta 1790, 1067–1074Google Scholar
  39. Stoscheck, C.M. (1990) Quantitation of protein. Methods Enzymol. 182, 50–68Google Scholar
  40. Veenstra, J.A., Rodriguez, L., Weaver, R.J. (2012) Allatotropin, leucokinin and AKH in honey bees and other Hymenoptera. Peptides 35, 122–130CrossRefPubMedGoogle Scholar
  41. Wang, H., Zhang, S., Zeng, Z., Yan, W., Wang, H.et al. (2014). Nutrition affects longevity and gene expression in honey bee (Apis mellifera) workers. Apidologie 45, 618–625CrossRefGoogle Scholar
  42. Winston, M.L. (1987). The Biology of the Honey Bee. Harward University Press, Cambridge, MassachusettsGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Tomáš Jehlík
    • 1
    • 2
  • Dalibor Kodrík
    • 1
    • 2
  • Václav Krištůfek
    • 3
  • Justina Koubová
    • 1
    • 2
  • Michala Sábová
    • 1
  • Jiří Danihlík
    • 4
  • Aleš Tomčala
    • 5
  • Radmila Čapková Frydrychová
    • 1
    • 2
    Email author
  1. 1.Institute of EntomologyCzech Academy of Sciences, Biology CentreČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Institute of Soil BiologyCzech Academy of Sciences, Biology CentreČeské BudějoviceCzech Republic
  4. 4.Faculty of SciencePalacký UniversityOlomoucCzech Republic
  5. 5.Institute of ParasitologyCzech Academy of Sciences, Biology CentreČeské BudějoviceCzech Republic

Personalised recommendations