Advertisement

Apidologie

pp 1–15 | Cite as

Nucleotide sequence variations may be associated with virulence of deformed wing virus

  • Sandra Barroso-ArévaloEmail author
  • Marina Vicente-Rubiano
  • Fernando Molero
  • Francisco Puerta
  • José Manuel Sánchez-Vizcaíno
Original article
  • 35 Downloads

Abstract

Western honey bees (Apis mellifera) are key players in crop pollination and in the maintenance of global biodiversity. Their viability is threatened by Varroa destructor, which acts as a vector of the deformed wing virus (DWV). Several genetic DWV variants have been reported, but it is unclear whether their virulence differs. We examined the prevalence of V. destructor and DWV as well as bee health in two colonies over 21 months and then characterizing DWV variants from each colony using phylogenetics. Colony H showed no signs of disease or mortality, and DWV sequence from this colony clustered with VDV/DWV-B sequences previously reported in healthy colonies. Colony W showed DWV symptoms, and DWV sequence clustered with DWV-A sequences previously reported in colonies with symptoms. These results suggest that nucleotide variations in the DWV genome can affect its virulence. Genotyping DWV variants in colonies may be an effective tool to assess risk and initiate preventive measures early.

Keywords

deformed wing virus V. destructor virus virulence phylogeny honey bee 

Notes

Acknowledgments

The authors thank Deborah Kukielka for valuable support and help during reviewing of the manuscript.

Author contributions

SB, MVR, and JSV designed experiments, FP helped in the interpretation of the data, SB and FMR performed experiments and analysis, and SB wrote the paper. All authors read and approved the manuscript.

Supplementary material

13592_2019_660_MOESM1_ESM.pdf (18 kb)
ESM 1. (PDF 17 kb)
13592_2019_660_MOESM2_ESM.pdf (95 kb)
ESM 2. (PDF 94 kb)
13592_2019_660_MOESM3_ESM.pdf (107 kb)
ESM 3. (PDF 106 kb)
13592_2019_660_MOESM4_ESM.pdf (98 kb)
ESM 4. (PDF 98 kb)
13592_2019_660_MOESM5_ESM.pdf (103 kb)
ESM 5. (PDF 102 kb)

References

  1. Amdam GV, Hartfelder K, Norberg K, Hagen A, Omholt SW (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97:741–747CrossRefGoogle Scholar
  2. Amiri E, Meixner M, Nielsen SL, Kryger P (2015) Four Categories of Viral Infection Describe the Health Status of Honey Bee Colonies PLoS One 10:e0140272  https://doi.org/10.1371/journal.pone.0140272 CrossRefGoogle Scholar
  3. Benaets K et al. (2017) Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival Proc. R. Soc. B Biol. Sci. 284:20162149  https://doi.org/10.1098/rspb.2016.2149 CrossRefGoogle Scholar
  4. Boni MF, Posada D, Feldman MW (2007) An Exact Nonparametric Method for Inferring Mosaic Structure in Sequence Triplets Genetics 176:1035–1047  https://doi.org/10.1534/genetics.106.068874 CrossRefGoogle Scholar
  5. Cornman RS, Boncristiani H, Dainat B, Chen Y, vanEngelsdorp D, Weaver D, Evans JD (2013) Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing BMC Genomics 14:154–154  https://doi.org/10.1186/1471-2164-14-154 CrossRefGoogle Scholar
  6. Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P (2012) Predictive markers of honey bee colony collapse PLoS One 7:e32151  https://doi.org/10.1371/journal.pone.0032151 CrossRefGoogle Scholar
  7. de Miranda JR, Genersch E (2010) Deformed wing virus J. Invertebr. Pathol. 103 Suppl 1:S48–61  https://doi.org/10.1016/j.jip.2009.06.012 CrossRefGoogle Scholar
  8. Dietemann V et al. (2012) Standard methods for varroa research. In V Dietemann; J D Ellis; P Neumann (Eds) The COLOSS BEEBOOK, Volume II: standard methods for Apis mellifera pest and pathogen research. J. Apicult. Res. 52(1):  https://doi.org/10.3896/IBRA.1.52.1.09 Journal of Apicultural Research 52:1–54  https://doi.org/10.3896/IBRA.1.52.1.09
  9. Felsenstein J (1985) CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.Evolution 39(4):783-791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefGoogle Scholar
  10. Folimonova SY (2012) Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein J. Virol. 86:5554–5561  https://doi.org/10.1128/jvi.00310-12 CrossRefGoogle Scholar
  11. Fujiyuki T, Takeuchi H, Ono M, Ohka S, Sasaki T, Nomoto A, Kubo T (2004) Novel insect picorna-like virus identified in the brains of aggressive worker honeybees J. Virol. 78:1093–1100CrossRefGoogle Scholar
  12. Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.) Vet. Res. 41:54  https://doi.org/10.1051/vetres/2010027 CrossRefGoogle Scholar
  13. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences Bioinformatics 16:573–582CrossRefGoogle Scholar
  14. Gisder S, Aumeier P, Genersch E (2009) Deformed wing virus: replication and viral load in mites (Varroa destructor) J Gen Virol 90:463–467  https://doi.org/10.1099/vir.0.005579-0 CrossRefGoogle Scholar
  15. Gisder S, Mockel N, Eisenhardt D, Genersch E (2018) In vivo evolution of viral virulence: switching of deformed wing virus between hosts results in virulence changes and sequence shifts Environ. Microbiol. 20:4612–4628  https://doi.org/10.1111/1462-2920.14481 CrossRefGoogle Scholar
  16. Guzmán-Novoa E, Eccles L, Calvete Y, Mcgowan J, Kelly PG, Correa-Benítez A (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada Apidologie 41:443–450  https://doi.org/10.1051/apido/2009076 CrossRefGoogle Scholar
  17. Kevill JL, Highfield A, Mordecai GJ, Martin SJ, Schroeder DC (2017) ABC Assay: Method Development and Application to Quantify the Role of Three DWV Master Variants in Overwinter Colony Losses of European Honey Bees Viruses 9:314CrossRefGoogle Scholar
  18. Kielmanowicz MG et al. (2015) Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses PLoS Pathog. 11:e1004816  https://doi.org/10.1371/journal.ppat.1004816 CrossRefGoogle Scholar
  19. Kukielka D, Esperón F, Higes M, Sánchez-Vizcaíno JM (2008) A sensitive one-step real-time RT-PCR method for detection of deformed wing virus and black queen cell virus in honeybee Apis mellifera J. Virol. Methods 147:275–281  https://doi.org/10.1016/j.jviromet.2007.09.008 CrossRefGoogle Scholar
  20. Kumar MNaS (2000) Molecular Evolution and Phylogenetics. New YorkGoogle Scholar
  21. Lanzi G et al. (2006) Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.) J. Virol. 80:4998–5009  https://doi.org/10.1128/JVI.80.10.4998-5009.2006 CrossRefGoogle Scholar
  22. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes Virus Evolution 1:vev003  https://doi.org/10.1093/ve/vev003 CrossRefGoogle Scholar
  23. Martin DP, Posada D, Crandall KA, Williamson C (2005) A Modified Bootscan Algorithm for Automated Identification of Recombinant Sequences and Recombination Breakpoints AIDS Res. Hum. Retrovir. 21:98–102  https://doi.org/10.1089/aid.2005.21.98 CrossRefGoogle Scholar
  24. Martin SJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J. Appl. Ecol. 38:1082–1093  https://doi.org/10.1046/j.1365-2664.2001.00662.x CrossRefGoogle Scholar
  25. Martin SJ et al. (2012) Global honey bee viral landscape altered by a parasitic mite Science 336:1304–1306  https://doi.org/10.1126/science.1220941 CrossRefGoogle Scholar
  26. McMahon DP et al. (2016) Elevated virulence of an emerging viral genotype as a driver of honeybee loss Proc. R. Soc. B Biol. Sci. 283:20160811  https://doi.org/10.1098/rspb.2016.0811 CrossRefGoogle Scholar
  27. Ministerio de agricultura y pesca ayma (2017) Programa de vigilancia sobre las pérdidas de colonias de abejas.Google Scholar
  28. Möckel N, Gisder S, Genersch E (2011) Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route J Gen Virol 92:370–377  https://doi.org/10.1099/vir.0.025940-0 CrossRefGoogle Scholar
  29. Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, Ryabov EV (2011) Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies J Gen Virol 92:156–161  https://doi.org/10.1099/vir.0.025965-0 CrossRefGoogle Scholar
  30. Mordecai GJ, Brettell LE, Martin SJ, Dixon D, Jones IM, Schroeder DC (2016a) Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies ISME. J 10:1182–1191  https://doi.org/10.1038/ismej.2015.186 CrossRefGoogle Scholar
  31. Mordecai GJ, Wilfert L, Martin SJ, Jones IM, Schroeder DC (2016b) Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies ISME J 10:1264–1273  https://doi.org/10.1038/ismej.2015.178 CrossRefGoogle Scholar
  32. Natsopoulou ME, McMahon DP, Doublet V, Frey E, Rosenkranz P, Paxton RJ (2017) The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss Sci. Rep. 7:5242  https://doi.org/10.1038/s41598-017-05596-3 CrossRefGoogle Scholar
  33. Ogden TH, Rosenberg MS (2006) Multiple sequence alignment accuracy and phylogenetic inference Syst. Biol. 55:314–328  https://doi.org/10.1080/10635150500541730 CrossRefGoogle Scholar
  34. Ongus JR, Peters D, Bonmatin JM, Bengsch E, Vlak JM, van Oers MM (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor J. Gen. Virol. 85:3747–3755  https://doi.org/10.1099/vir.0.80470-0 CrossRefGoogle Scholar
  35. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination Virology 265:218–225  https://doi.org/10.1006/viro.1999.0056 CrossRefGoogle Scholar
  36. Pirk CWW et al. (2013) Statistical guidelines for Apis mellifera research J. Apic. Res. 52:1–24  https://doi.org/10.3896/IBRA.1.52.4.13 CrossRefGoogle Scholar
  37. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: Computer simulations Proc. Natl. Acad. Sci. U. S. A. 98:13757–13762  https://doi.org/10.1073/pnas.241370698 CrossRefGoogle Scholar
  38. Ramsey SD et al. (2019) Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. 116:1792–1801  https://doi.org/10.1073/pnas.1818371116 CrossRefGoogle Scholar
  39. Reddy KE et al. (2013) Molecular characterization and phylogenetic analysis of deformed wing viruses isolated from South Korea Vet. Microbiol. 167:272–279  https://doi.org/10.1016/j.vetmic.2013.08.018 CrossRefGoogle Scholar
  40. Ryabov EV et al. (2014) A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission PLoS Pathog. 10:e1004230  https://doi.org/10.1371/journal.ppat.1004230 CrossRefGoogle Scholar
  41. Schroeder DC, Martin SJ (2012) Deformed wing virus: The main suspect in unexplained honeybee deaths worldwide Virulence 3:589–591  https://doi.org/10.4161/viru.22219 CrossRefGoogle Scholar
  42. Shen M, Yang X, Cox-Foster D, Cui L (2005) The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees Virology 342:141–149  https://doi.org/10.1016/j.virol.2005.07.012 CrossRefGoogle Scholar
  43. Smith JM (1992) Analyzing the mosaic structure of genes J. Mol. Evol. 34:126–129  https://doi.org/10.1007/BF00182389 Google Scholar
  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 Mol. Biol. Evol. 30:2725–2729  https://doi.org/10.1093/molbev/mst197 CrossRefGoogle Scholar
  45. Thompson CE, Biesmeijer JC, Allnutt TR, Pietravalle S, Budge GE (2014) Parasite pressures on feral honey bees (Apis mellifera sp.) PLoS One 9: e105164  https://doi.org/10.1371/journal.pone.0105164 CrossRefGoogle Scholar
  46. Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of multiple sequence alignment programs Nucleic Acids Res. 27:2682–2690CrossRefGoogle Scholar
  47. Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJ, Boots M (2016) Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites Science 351:594–597  https://doi.org/10.1126/science.aac9976 CrossRefGoogle Scholar
  48. Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity BioTechniques 22:474–476, 478-481CrossRefGoogle Scholar
  49. Yang X, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification Proc. Natl. Acad. Sci. U. S. A. 102:7470–7475  https://doi.org/10.1073/pnas.0501860102 CrossRefGoogle Scholar
  50. Zioni N, Soroker V, Chejanovsky N (2011) Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee Virology 417:106–112  https://doi.org/10.1016/j.virol.2011.05.009 CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.VISAVET Centre and Animal Health Department, Veterinary SchoolComplutense University of MadridMadridSpain
  2. 2.Apicultural Reference Center in Andalusia (CERA)AndalusiaSpain

Personalised recommendations