, Volume 50, Issue 1, pp 90–99 | Cite as

Biogenic amines shift during the pre-reproductive to reproductive transition in the small carpenter bee, Ceratina calcarata

  • Chelsea N. CookEmail author
  • Sarah P. Lawson
  • Colin S. Brent
  • Sandra M. Rehan
Original article


The shift from solitary to social living is a major evolutionary transition for social insects. In bees, this transition is marked by certain females becoming reproductive and reducing their role in nest and offspring care, duties that are assumed by other females. Biogenic amines play a significant role in regulating these behaviors in both solitary and social insects. How has the function of biogenic amines in solitary insects been coopted for social behaviors? Here, we used Ceratina calcarata, a behaviorally well-studied small subsocial carpenter bee to explore how biogenic amines may play a role in the reproductive shift over a season. We found that as females transition from a pre-reproductive to reproductive state, ovarian development is accompanied by an increase in brain levels of octopamine and serotonin. For comparison, we provide the first characterization of biogenic amines in the brains of males. These results suggest the essential role of biogenic amines in the transition of reproductive states in a bee on the brink of sociality and provide a deeper understanding of how biogenic amines may have influenced the evolution of social behavior.


biogenic amines reproductive status octopamine serotonin incipiently social 



We thank Salena Helmreich, Wyatt Shell, and Jacob Withee for assistance with nest collections.

Author contributions

CNC, SPL, and SMR conceived the research experiment, collected, and analyzed data and contributed to manuscript preparation. CSB assisted with data interpretation and manuscript preparation. All authors read and approved the final manuscript.

Funding information

This work was supported by funding from the University of New Hampshire to SMR, National Science Foundation—Integrative Organismal Systems: Behavioral Systems (1456296) to SMR and National Science Foundation Postdoctoral Research Fellowship (1523664) to SPL. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest in relation to the study in this paper.


  1. Alekseyenko, O. V., Chan, Y. B., De La Paz Fernandez, M., Bülow, T., Pankratz, M. J. and Kravitz, E. A. (2014). Single serotonergic neurons that modulate aggression in Drosophila. Curr. Biol. 24, 2700–2707.CrossRefGoogle Scholar
  2. Amdam, G. V. and Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J. Theor. Biol. 223, 451–464.CrossRefGoogle Scholar
  3. Barron, A. B., Schulz, D. J. and Robinson, G. E. (2002). Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol A 188, 603–610.CrossRefGoogle Scholar
  4. Barron, A. B., Maleszka, R., Meer, R. K. Vander and Robinson, G. E. (2007). Octopamine modulates honey bee dance behavior. Sci. York 104, 1703–1707.Google Scholar
  5. Bicker, G. and Menzel, R. (1989). Chemical codes for the control of behaviour in arthropods. Nature 337, 33–39.CrossRefGoogle Scholar
  6. Blenau, W. and Baumann, A. (2001). Molecular and pharmacological properties of insect biogenic amine receptors: Lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect Biochem. Physiol. Arch. Insect Biochem. Physiol. 48, 13–38.CrossRefGoogle Scholar
  7. Bloch, G. and Grozinger, C. M. (2011). Social molecular pathways and the evolution of bee societies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 2155–2170.CrossRefGoogle Scholar
  8. Bloch, G. and Simon, T. (2000). Brain biogenic amines and reproductive dominance in bumble bees (Bombus terrestris). J. Comp. Physiol. A. 186, 261-8.CrossRefGoogle Scholar
  9. Braun, G. and Bicker, G. (1992). Habituation of an appetitive reflex in the honeybee. J. Neurophysiol. 67, 588–598.CrossRefGoogle Scholar
  10. Brent, C. S., Miyasaki, K., Vuong, C., Miranda, B., Steele, B., Brent, K. G. and Nath, R. (2016). Regulatory roles of biogenic amines and juvenile hormone in the reproductive behavior of the western tarnished plant bug (Lygus hesperus). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 186, 169–179.CrossRefGoogle Scholar
  11. Chandler, L. (1975). Eusociality in Ceratina calcarata Robertson (Hymenoptera: Anthophoridae). Proc. Indiana Acad. Sci. 84, 283–284.Google Scholar
  12. Claassen, D. E. and Kammer, A. E. (1986). Effects of octopamine, dopamine, and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta. J. Neurobiol. 17, 1–14.CrossRefGoogle Scholar
  13. Cook, C. N., Brent, C. S. and Breed, M. D. (2017). Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (Apis mellifera). J. Exp. Biol. 220, 1925–1930.CrossRefGoogle Scholar
  14. Cuvillier-Hot, V. and Lenoir, A. (2006). Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi. Naturwissenschaften 93, 149–153.CrossRefGoogle Scholar
  15. Dolzer, J., Krannich, S., Fischer, K. and Stengl, M. (2001). Oscillations of the transepithelial potential of moth olfactory sensilla are influenced by octopamine and serotonin. J. Exp. Biol. 204, 2781–94.Google Scholar
  16. Evans, P. D. (1980). Biogenic Amines in the Insect Nervous System. In Adv. Insect. Physiol. 15, pp. 317–473.CrossRefGoogle Scholar
  17. Fussnecker, B. L., Smith, B. H. and Mustard, J. A. (2006). Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J. Insect Physiol. 52, 1083–1092.CrossRefGoogle Scholar
  18. Greengard, P. (2001). The Neurobiology of Slow Synaptic Transmission. Science (80) 294, 1024–1030.CrossRefGoogle Scholar
  19. Harris, J. W. and Woodring, J. (1992). Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. J. Insect Physiol. 38, 29–35.CrossRefGoogle Scholar
  20. Huang, Z. Y., Robinson, G. E., Tobe, S. S., Yagi, K. J., Strambi, C., Strambi, A. and Stay, B. (1991). Hormonal regulation of behavioural development in the honey bee is based on changes in the rate of juvenile hormone biosynthesis. J. Insect Physiol. 37, 733–741.CrossRefGoogle Scholar
  21. Huber, R. (2005). Amines and motivated behaviors: A simpler systems approach to complex behavioral phenomena. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 191, 231–239.CrossRefGoogle Scholar
  22. Kamhi, J. F., Arganda, S., Moreau, C. S. and Traniello, J. F. A. (2017). Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems. Front. Syst. Neurosci. 11, 1–9.CrossRefGoogle Scholar
  23. Kapheim, K. M., Smith, A. R., Ihle, K. E., Amdam, G. V, Nonacs, P. and Wcislo, W. T. (2012). Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee. Proc. Biol. Sci. 279, 1437–46.CrossRefGoogle Scholar
  24. Korczynska, J., Szczuka, A., Kieruzel, M., Majczynski, H., Khvorostova, N. and Godzinska, E. J. (2005). Effects of the Biogenic Amines, Dopamine, Tyramine, and Octopamine on the Behavior of Carpenter Ant Workers [Camponotus herculeanus (Hymenoptera: Formicidae)] During Nestmate Reunion Tests Carried Out After A Period of Social Isolation. Sociobiology 45, 409–447.Google Scholar
  25. Lawson, S. P., Ciaccio, K. N. and Rehan, S. M. (2016). Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behav. Ecol. Sociobiol. 70, 1891–1900.CrossRefGoogle Scholar
  26. Linn, C. E. (1997). Neuroendocrine factors in the photoperiodic control of male moth responsiveness to sex pheromone. In Insect Pheromone Research, pp. 194–209. Springer, Boston, MA.Google Scholar
  27. Mezawa, R., Akasaka, S., Nagao, T. and Sasaki, K. (2013). Neuroendocrine mechanisms underlying regulation of mating flight behaviors in male honey bees (Apis mellifera L.). Gen. Comp. Endocrinol. 186, 108–115.CrossRefGoogle Scholar
  28. Michener, C. D. (1985). From solitary to eusocial: need there be a series of intervening species? Exp. Behav. Ecol. Sociobiol. 31, 293–305.Google Scholar
  29. Mikát, M., Franchino, C. and Rehan, S. M. (2017). Sociodemographic variation in foraging behavior and the adaptive significance of worker production in the facultatively social small carpenter bee, Ceratina calcarata. Behav. Ecol. Sociobiol. 71, 135.CrossRefGoogle Scholar
  30. Nouvian, M., Mandal, S., Jamme, C., Claudianos, C., d’Ettorre, P., Reinhard, J., Barron, A. B. and Giurfa, M. (2018). Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. Proc. R. Soc. B Biol. Sci. 285, 20172653.CrossRefGoogle Scholar
  31. Okada, Y., Sasaki, K., Miyazaki, S., Shimoji, H., Tsuji, K. and Miura, T. (2015). Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J. Exp. Biol. 218, 1091–1098.CrossRefGoogle Scholar
  32. Penick, C. A., Brent, C. S., Dolezal, K. and Liebig, J. (2014). Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant Harpegnathos saltator. J. Exp. Biol. 217, 1496–1503.CrossRefGoogle Scholar
  33. Perepelova, L. (1929). Laying workers, the ovipositing of the queen, and swarming. Bee World 10, 69–71.CrossRefGoogle Scholar
  34. Rehan, S. M. and Richards, M. H. (2010a). The influence of maternal quality on brood sex allocation in the small carpenter bee, Ceratina calcarata. Ethology 116, 876–887.Google Scholar
  35. Rehan, S. M. and Richards, M. H. (2010b). Nesting biology and subsociality in ceratina calcarata (Hymenoptera: Apidae). Can. Entomol. 142, 65–74.CrossRefGoogle Scholar
  36. Rehan, S. M. and Richards, M. H. (2013). Reproductive aggression and nestmate recognition in a subsocial bee. Anim. Behav. 85, 733–741.CrossRefGoogle Scholar
  37. Rehan, S. M. and Toth, A. L. (2015). Climbing the social ladder: The molecular evolution of sociality. Trends Ecol. Evol. 30, 426–433.CrossRefGoogle Scholar
  38. Rehan, S. M., Richards, M. H., Adams, M. and Schwarz, M. P. (2014). The costs and benefits of sociality in a facultatively social bee. Anim. Behav. 97, 77–85.CrossRefGoogle Scholar
  39. Sakagami, S. and Maeta, Y. (1995). Task allocation in artificially induced colonies of a basically solitary bee Ceratina (Ceratsinidia) okinawana, with a comparison of sociality between Ceratina and Xylocopa (Hymenoptera, Anthophoridae, Xylocopinae). Japanese J. Ecol. 63, 115–150.Google Scholar
  40. Sasaki, K., Yamasaki, K. and Nagao, T. (2007). Neuro-endocrine correlates of ovarian development and egg-laying behaviors in the primitively eusocial wasp (Polistes chinensis). J. Insect Physiol. 53, 940–949.CrossRefGoogle Scholar
  41. Sasaki, K., Yamasaki, K. and Tsuchida, K. (2009). Gonadotropic effects of dopamine in isolated workers of the primitively eusocial wasp, Polistes chinensis. Naturwissenschaften 96, 625–629.CrossRefGoogle Scholar
  42. Scheiner, R., Reim, T., Søvik, E., Entler, B. V, Barron, A. B. and Thamm, M. (2017). Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. J. Exp. Biol. 220, 1443-50CrossRefGoogle Scholar
  43. Schulz, D. J. and Robinson, G. E. (1999). Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J. Comp. Physiol. A. 184, 481–8.CrossRefGoogle Scholar
  44. Seid, M. A. and Traniello, J. F. A. (2005). Age-related changes in biogenic amines in individual brains of the ant Pheidole dentata. Naturwissenschaften 92, 198-201.CrossRefGoogle Scholar
  45. Shell, W. A. and Rehan, S. M. (2016). Recent and rapid diversification of the small carpenter bees in eastern North America. Biol. J. Linn. Soc. 117, 633–645.CrossRefGoogle Scholar
  46. Smith, A. R., Wcislo, W. T. and O’Donnell, S. (2008). Body size shapes caste expression, and cleptoparasitism reduces body size in the facultatively eusocial bees Megalopta (Hymenoptera: Halictidae). J. Insect Behav. 21, 394–406.CrossRefGoogle Scholar
  47. Smith, A. R., Kapheim, K. M., O’Donnell, S. and Wcislo, W. T. (2009). Social competition but not subfertility leads to a division of labour in the facultatively social sweat bee Megalopta genalis (Hymenoptera: Halictidae). Anim. Behav. 78, 1043–1050.CrossRefGoogle Scholar
  48. Stevenson, P. A, Hofmann, H. A, Schoch, K. and Schildberger, K. (2000). The fight and flight responses of crick - PubMed Mobile. J Neurobiol. 43, 107–20.CrossRefGoogle Scholar
  49. Vargas, M. A., Luo, N., Yamaguchi, A. and Kapahi, P. (2010). A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr. Biol. 20, 1006–1011.CrossRefGoogle Scholar
  50. Vergoz, V., Lim, J. and Oldroyd, B. P. (2012). Biogenic amine receptor gene expression in the ovarian tissue of the honey bee Apis mellifera. Insect Mol. Biol. 21, 21–29.CrossRefGoogle Scholar
  51. Wagener-Hulme, C., Kuehn, J. C., Schulz, D. J. and Robinson, G. E. (1999). Biogenic amines and division of labor in honey bee colonies. J. Comp. Physiol. A. 184, 471–9.CrossRefGoogle Scholar
  52. Wilson, E. (1971). The Insect Societies. Cambridge, Massachusettes: Belknap/Harvard University Press.Google Scholar
  53. Withee, J. R. and Rehan, S. M. (2016). Cumulative effects of body size and social experience on aggressive behaviour in a subsocial bee. Behaviour 153, 1365–1385.CrossRefGoogle Scholar
  54. Yuan, Q., Lin, F., Zheng, X. and Sehgal, A. (2005). Serotonin modulates circadian entrainment in Drosophila. Neuron 47, 115–127.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Chelsea N. Cook
    • 1
    Email author
  • Sarah P. Lawson
    • 2
  • Colin S. Brent
    • 3
  • Sandra M. Rehan
    • 2
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Department of Biological SciencesUniversity of New HampshireDurhamUSA
  3. 3.US Department of Agriculture, Arid-Land Agricultural Research CenterMaricopaUSA

Personalised recommendations