, Volume 49, Issue 2, pp 276–286 | Cite as

Constant flower damage caused by a common stingless bee puts survival of a threatened buzz-pollinated species at risk

  • Juliana Ordones Rego
  • Reisla Oliveira
  • Claudia Maria Jacobi
  • Clemens Schlindwein
Original article


Illegitimate flower visitors may reduce the reproductive success of their host plants. Eriocnema fulva, a threatened Melastomataceae of the Atlantic Forest, Brazil, has pollen flowers with poricidal anthers that show frequent damage of floral parts. We identified the flower-damaging bees and determined their impact on fruit set. Bees of seven species visited their flowers, but only three species collected pollen by vibration. With only one visit to a flower patch per 12 h, the frequency of effective buzz pollinating bees was negligible, while flower-damaging workers of the stingless bee Trigona fulviventris (Apidae) accounted for 70% of the visits. During their lengthy visits, they cut anthers to access pollen, and often styles as well. We conclude that the direct negative consequence of flower damage by Trigona bees, as well as their indirect impact by making the flowers unattractive for effective pollinators is a major reason for the low fruit set (6.9%) of E. fulva. Considering the rareness of the plant species, these negative effects put the survival of E. fulva at risk.


destructive flower visits Meliponini pollen robbers reproductive success Trigona 



We thank Carlos Alberto Ferreira Junior for his help during field work; José Neiva, Alberto Teixido, and Paula Calaça for their help with the statistical analyses and discussion; and David Inouye and two anonymous reviewers for their comments, which improved the manuscript. The Fundação Zoo-Botânica provided logistic support. The support of the graduate course in Ecology, Conservation and Management of Wildlife (ECMVS), Universidade Federal de Minas Gerais, is duly acknowledged. We also thank for the individual research fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-CAPES) to RO, and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to CMJ and CS.


JOR, CS conceived research, designed experiments; RO, CMJ design, interpretation of data; JOR performed experiments; JOR, CS wrote the paper. All authors read and approved the final manuscript.

Funding information

This research received financial support from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Processo APQ-01707-14.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agresti, A. (2007) Logistic Regression, in: An introduction to categorical data analysis, Second Edition, John Wiley, Sons, Inc., Hoboken, NJ, USA.
  2. Andrade, P.M. (2009) Sistema de reprodução e recomendações para conservação da Eriocnema fulva Naudin (Melastomataceae), espécie ameaçada de extinção. Biota 2 (1), 4–31Google Scholar
  3. Andrade, P.M., Forni-Martins, E.R., Martins, F.R. (2007a) Reproductive system of Eriocnema fulva Naudin (Melastomataceae), an endemic species of Minas Gerais state, SE Brazil. Braz. J. Biol. 67 (2), 313–319CrossRefPubMedGoogle Scholar
  4. Andrade, P.M., Santos, F.A.M., Martins, F.R. (2007b) Size structure and fertility in an Eriocnema fulva Naudin (Melastomataceae) population in Southeastern Brazil. Braz. J. Biol. 67 (4), 685–693CrossRefPubMedGoogle Scholar
  5. Baumgratz, J.F.A., Pinheiro, F.M., Santos, L.A.F., Barros, F.S.M., Sfair, J.C., Moraes, M.A., Messina, T. (2013) Melastomataceae, in: Martinelli, G., Moraes, M.A. (Eds.), Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp. 673–696Google Scholar
  6. Bezerra, E.L.S., Machado, I.C. (2003) Biologia floral e sistema de polinizacão de Solanum stramonifolium Jacq. (Solanaceae) em remanescente de Mata Atlântica, Pernambuco. Acta Botanica Brasilica 17, 247–257CrossRefGoogle Scholar
  7. Buchmann, S.L. (1983) Buzz pollination in angiosperms, in: C.E. Jones, R.J. Little (Eds.), Handbook of experimental pollination biology. Van Nostrand, Reinhold, New York, pp. 73–113Google Scholar
  8. Burkart, A., Schlindwein, C., Lunau, K. (2014) Assessment of pollen reward and pollen availability in Solanum stramoniifolium and Solanum paniculatum for buzz-pollinating carpenter bees. Plant Biol. 16, 503–507CrossRefPubMedGoogle Scholar
  9. Canela, M.B.F., Sazima, M. (2003) Florivory by the crab Armases angustipes (Grapsidae) influences hummingbird visits to Aechmea pectinata (Bromeliaceae). Biotropica 35, 289–294CrossRefGoogle Scholar
  10. Dafni, A., Kevan, P.G., Husband, B.C. (2005) Practical Pollination Ecology. Enviroquest, Cambridge, CanadaGoogle Scholar
  11. De Luca, P.A., Vallejo-Marín, M. (2013) What’s the “buzz” about? The ecology and evolutionary significance of buzz-pollination. Curr. Opin. Plant Biol. 16, 429–435CrossRefPubMedGoogle Scholar
  12. De Luca, P. A., L. F. Bussiere, D. Souto-Vilaros, D. Goulson, A. C. Mason, M. Vallejo-Marín (2013). Variability in bumblebee pollination buzzes affects the quantity of pollen released from flowers. Oecologia 172, 805–816CrossRefPubMedGoogle Scholar
  13. Drummond, G.M., Martins, C.S., Machado, A.B.M., Sebaio, F.A., Antonini, Y. (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação. Belo Horizonte, Fundação Biodiversitas, 222p Google Scholar
  14. Endress, P. K. (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  15. Evans, M.E.K., Menges, E.C., Gordon, D.R. (2003) Reproductive biology of three sympatric endangered plants endemic to Florida scrub. Biol. Conserv. 111, 235–246CrossRefGoogle Scholar
  16. Ferreira, C.A., Torezan-Silingardi, H.M. (2013) Implications of the floral herbivory on Malpighiaceae plant fitness: visual aspect of the flower affects the attractiveness to pollinators. Sociobiology 60 (3), 323–328CrossRefGoogle Scholar
  17. Fracasso, C.M. (2008) Biologia da Polinização e reprodução de espécies de Melastomataceae do Parque Nacional da Serra da Canastra, Minas Gerais. Tese de doutorado, Universidade Estadual de CampinasGoogle Scholar
  18. Fracasso, C.A., Sazima, M. (2004). Polinização de Cambessedesia hilariana (Kunth) D.C. (Melastomataceae): sucesso reprodutivo versus diversidade, comportamento e frequência de visitas de abelhas. Rev. Bras. Bot. 27 (4), 797–804CrossRefGoogle Scholar
  19. Giannini, T.C., Boff, S., Cordeiro, G.D., Cartolano, Jr. E.A., Veiga, A.K., Imperatriz-Fonseca, V.L., Saraiva, A.M. (2014) Crop pollinators in Brazil: a review of reported interactions. Apidologie 46, 209–223CrossRefGoogle Scholar
  20. Giulietti, A.M., Pirani, J.R., Harley, R.M. (1997) Espinhaço range region, in: Davis, S.D., Heywood, V.H., Herrera-MacBride, O., Villa-Lobos, J., Hamilton, A.C. (Eds.), Centres of plant diversity, vol. 3. The Americas. WWF-IUCN, Washington, 397–404Google Scholar
  21. Gottsberger, G., Silberbauer-Gottsberger, I. (1988) Evolution of flower structure and pollination in Neotropical Cassinae (Caesalpiniaceae) species. Phyton (Austria) 28, 293–320Google Scholar
  22. Hokche, O.D., Ramirez, N. (2008) Sistemas reproductivos em especies de Melastomataceae en La Gran Sabana (Estado Bolívar, Venezuela). Acta Bot. Venezuela 31, 387–408Google Scholar
  23. Ims, R. A. (1990) The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5, 135–140CrossRefPubMedGoogle Scholar
  24. Jacobi, C.M., do Carmo, F.F. (2008) The Contribution of Ironstone Outcrops to Plant Diversity in the Iron Quadrangle, a threatened Brazilian landscape. Ambio (Oslo) 37, 324–326CrossRefGoogle Scholar
  25. Jacobi, C.M., do Carmo, F.F., Campos, I.C. (2011) Soaring extinction threats to endemic plants in Brazilian metal-rich regions. Ambio (Oslo) 40, 540–543CrossRefGoogle Scholar
  26. Jaffé, R., Castilla, A., Pope, N., Imperatriz-Fonseca, V.L., Metzger, J.P., Arias, M.C., Jha, S. (2016) Landscape genetics of a tropical rescue pollinator. Conserv. Genet. 17, 267–278CrossRefGoogle Scholar
  27. Kearns, C.A., Inouye, D.W., Waser, N.W. (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112CrossRefGoogle Scholar
  28. Kruckeberg, A.R., Rabinowitz, D. (1985) Biological aspects of endemism in higher plants. Annu. Rev. Ecol. Syst. 16, 447–479CrossRefGoogle Scholar
  29. Krupnick, G.A., Weis, A.E., Campbell, D.R. (1999) The consequences of floral herbivory for pollinator service to Isomeris arborea. Ecology 80 (1), 125–134CrossRefGoogle Scholar
  30. Martini, P., Schlindwein, C., Montenegro, A. (2003) Pollination, flower longevity and reproductive biology of Gongora quinquenervis Ruíz and Pavón (Orchidaceae) in an Atlantic Forest fragment of Pernambuco, Brazil. Plant Biol. 5, 495–503CrossRefGoogle Scholar
  31. Mesquita-Neto, J.N., Costa, B.P. Schlindwein C. (2017). Heteranthery as a solution to the demands for pollen as food and for pollination—legitimate flower visitors reject flowers without feeding anthers. Plant Biol.,
  32. Milet-Pinheiro, P., Schlindwein, C. (2009) Pollination in Jacaranda rugosa (Bignoniaceae): euglossine pollinators, nectar robbers and low fruit set. Plant Biol. 11, 131–141CrossRefPubMedGoogle Scholar
  33. Ministério do Meio Ambiente (MMA) (2014). Portaria No 443, de 17 de Dezembro de 2014. Disponível em: < Acesso em 26/02/2014
  34. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B., Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858CrossRefPubMedGoogle Scholar
  35. Nunes-Silva, P., Hrncir, M., Imperatriz-Fonseca, V.L. (2010) A polinização por vibração. Oecol. Aust. 14, 140–151CrossRefGoogle Scholar
  36. Pinto, C.E., Schlindwein, C. (2014) Pollinator sharing and low pollen-ovule ratio diminish reproductive success in two sympatric species of Portulaca (Portulacaceae). Stud. Neotrop. Fauna Environ. 50(1), 4–13CrossRefGoogle Scholar
  37. Potts, S., Vulliamy, B., Roberts, S., O’Toole, C., Dafni, A., Ne'eman, G., Willmer, P. (2004) Nectar resource diversity organises flower-visitor community structure. Entomol. Exp. Appl. 113, 103–107CrossRefGoogle Scholar
  38. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL Google Scholar
  39. Ramos, A.M., Santos, L.A.R., Fortes, L.T.G. (Orgs.) (2009) Normais Climatológicas do Brasil (1961–1990). Instituto Nacional de Meteorologia. Brasília, DF. 465pGoogle Scholar
  40. Rathcke, B., Lacey E. P. (1985) Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Syst. 16, 179–214CrossRefGoogle Scholar
  41. Renner, S. (1983) The wide spread occurrence of anther destruction by Trigona bees in Melastomataceae. Biotropica 15, 251–256CrossRefGoogle Scholar
  42. Rodger, J.G., van Kleunen, M., Johnson, S.D. (2013) Pollinators, mates and Allee effects: the importance of self-pollination for fecundity in an invasive lily. Funct. Ecol. 27, 1023–1033CrossRefGoogle Scholar
  43. Roulston, T.H., Goodell, K. (2011) The role of resources and risks in regulating wild bee populations. Annu. Rev. Entomol. 56, 293–312CrossRefPubMedGoogle Scholar
  44. Santos, A.P.M., Romero, R., Oliveira, P.E.A.M. (2010). Biologia reprodutiva de Miconia angelana (Melastomataceae), endêmica da Serra da Canastra, Minas Gerais. Rev. Bras. Bot. 33, 333–341CrossRefGoogle Scholar
  45. Santos, A.P.M., Fracasso, C.M., Santos, M.L., Romero, R., Sazima, M., Oliveira, P.E.A.M. (2012) Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa. Ann. Bot. 110, 667–679CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sazima, I., Sazima, M. (1989) Mamangavas e irapuás (Hymenoptera, Apoidea): visitas, interações e conseqüências para polinização do maracujá (Passifloraceae). Rev. Bras. Entomol.33, 109–118Google Scholar
  47. Schlindwein, C., Wittmann, D., Martins, C.F., Hamm, A., Siqueira Filho, J.A., Schiffler, D., Machado, I.C. (2005) Pollination of Campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Syst. Evol. 250, 147–156CrossRefGoogle Scholar
  48. Schlindwein, C., Westerkamp, C., Carvalho, A.T., Milet-Pinnheiro, P. (2014) Visual signalling of nectar-offering flowers and specific morphological traits favour robust bee pollinators in the mass-flowering tree Handroanthus impetiginosus (Bignoniaceae). Bot. J. Linn. Soc. 176, 396–407CrossRefGoogle Scholar
  49. Schmitt J. (1983) Density-dependent pollinator foraging, flowering phenology, and temporal pollen dispersal patterns in Linanthus bicolor. Evolution 37, 1247–1257.CrossRefPubMedGoogle Scholar
  50. Silberbauer-Gottsberger, I., Vanin, S.A., Gottsberger, G. (2013) Interactions of the Cerrado palms Butia paraguayensis and Syagrus petraea with parasitic and pollinating insects. Sociobiology 60 (3), 306–316CrossRefGoogle Scholar
  51. Slaa, E.J., Sánchez Chaves, L.A., Malagodi-Braga, K.S., Hofstede, F.E. (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37, 293–315CrossRefGoogle Scholar
  52. Stein, K., Hensen, I. (2011) Potential pollinators and robbers: a study of the floral visitors of Heliconia angusta (Heliconiaceae) and their behaviour. J. Pollin. Ecol. 4 (6), 39–47Google Scholar
  53. Stephenson, A. G. 1982. When does outcrossing occur in a mass-flowering plant? Evolution 36, 762–767CrossRefPubMedGoogle Scholar
  54. Tezuka, T., Maeta Y. (1995) Pollen robbing behaviors observed in two species of introduced stingless bees (Hymenoptera, Apidae). Jpn. J. Entomol. 63, 759–762Google Scholar
  55. Vaughton, G., Ramsey, M. (2010) Pollinator-mediated selfing erodes the flexibility of the best-of-both-worlds mating strategy in Bulbine vagans. Funct. Ecol. 24, 374–382CrossRefGoogle Scholar
  56. Wilcock, C., Neiland, R. (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci. 7, 270–277CrossRefPubMedGoogle Scholar
  57. Wille-Trejos, A. (1963) Behavioral adaptations of bees for pollen collecting from Cassia flowers. Rev. Biol. Trop. 11 (2), 205–210Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia, Conservação e Manejo da Vida SilvestreUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations