, Volume 49, Issue 2, pp 252–264 | Cite as

The impact of winter feed type on intestinal microbiota and parasites in honey bees

  • Paul D’Alvise
  • Franziska Böhme
  • Marius Cosmin Codrea
  • Alexander Seitz
  • Sven Nahnsen
  • Mieke Binzer
  • Peter Rosenkranz
  • Martin Hasselmann
Original article


The intestinal microbiota of honey bees consists of only few bacterial species and may have effects on health and pathogen resilience. Honey is usually harvested and replaced by sugar syrup. We hypothesized that replacing honey may change the composition of the intestinal microbiota, and therefore compromise pathogen resilience. Fifteen colonies were fed with wheat starch syrup, sucrose syrup, or blossom honey. 16S-based bacterial community analysis was performed on three individuals per hive in summer and winter, and Nosema ceranae and Crithidia/Lotmaria levels were assessed by qPCR. Seasonal differences in the intestinal microbiota and N. ceranae were found; however, microbiota and parasite levels were very similar between the feed types. Rhizobiales and Bifidobacteria were found to be increased in the bees that had received honey or wheat starch syrup, as compared to sucrose syrup. In conclusion, intestinal microbiota and parasites were found to be largely unaffected by the winter feed type.


honey syrup microbiota Nosema Crithidia 



We thank Daniel Pfauth for his help with the bee hives.


MH, PR, SN, PD conceived and designed the study; PD, AS, FB conducted experiments; SN, MB, AS, MC, PD analyzed data; PD, MH wrote the paper. All authors read and approved the final manuscript.

Funding information

This study was supported by a grant of the Ministry of Rural Development and Consumer Protection Baden-Württemberg to Peter Rosenkranz and Martin Hasselmann (MicroBee project). Sven Nahnsen and Marius Cosmin Codrea acknowledge funding from the Deutsche Forschungsgemeinschaft (core facility initiative, KO-2313/6-1 and KO-2313/6-2, institutional strategy of the University of Tuebingen, ZUK 63).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2017_551_MOESM1_ESM.pdf (4.4 mb)
Figure S1. (PDF 4532 kb)


  1. Anderson, K. E., Sheehan, T. H., Eckholm, B. J., Mott, B. M., DeGrandi-Hoffman, G. (2011) An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insectes Soc. 58, 431–44CrossRefGoogle Scholar
  2. Baffoni, L., Gaggia, F., Alberoni, D., Cabbri, R., Nanetti, A., Biavati, B., di Gioia, D. (2016) Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benef. Microbes 7 (1), 45–51CrossRefPubMedGoogle Scholar
  3. Cariveau, D. P., Elijah Powell, J., Koch, H., Winfree, R., Moran, N. A. (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 8 (12), 1–11Google Scholar
  4. Corby-Harris, V. (2016) Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. J. Econ. Entomol. 109 (2), 537–43CrossRefPubMedGoogle Scholar
  5. Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318 (October), 283–87CrossRefPubMedGoogle Scholar
  6. da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, O. C. A., Fett, R. (2016) Honey: chemical composition, stability and authenticity. Food Chem. 196, 309–23CrossRefPubMedGoogle Scholar
  7. Di Prisco, G., Desiderato, A., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V. (2016) A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. 113 (12), 3203–8CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dillon, R., Vennard, C., Buckling, A., Charnley, A. (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol. Lett. 8, 1291–98CrossRefGoogle Scholar
  9. Engel, P., James, R. R., Koga, R., Kwong, W. K., Quinn, S., et al. (2013) Standard methods for research on Apis mellifera gut symbionts. J. Apic. Res. 52 (4), 1–24CrossRefGoogle Scholar
  10. Engel, P., Stepanauskas, R., Moran, N. A. (2014) Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet. 10 (9)Google Scholar
  11. Engel, P., Bartlett, K. D., Moran, N. (2015a) The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. MBio 6 (3), 1–8CrossRefGoogle Scholar
  12. Engel, P., Vizcaino, M. I., Crawford, J. M. (2015b) Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthesis pathways. Appl. Environ. Microbiol. 81 (4), 1502–12CrossRefPubMedPubMedCentralGoogle Scholar
  13. Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J., et al. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15 (5), 645–56CrossRefPubMedPubMedCentralGoogle Scholar
  14. Forsgren, E., Olofsson, T., Vasquez, A., Fries, I. (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108CrossRefGoogle Scholar
  15. Fries, I., Chauzat, M., Chen, Y., Doublet, V., Genersch, E., et al. (2013) Standard methods for Nosema research. J. Apic. Res. 52 (1), 1–28CrossRefGoogle Scholar
  16. Genersch, E., Von Der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., et al. (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–52CrossRefGoogle Scholar
  17. Gisder, S., Hedtke, K., Mo, N., Frielitz, M., Linde, A., Genersch, E. (2010) Five-year cohort study of Nosema spp. in Germany: does climate shape virulence and assertiveness of Nosema ceranae? Appl. Environ. Microbiol. 76 (9), 3032–38CrossRefPubMedPubMedCentralGoogle Scholar
  18. Herbig, A., Maixner, F., Bos, K. I., Krause, J., Huson, D. H. (2016) MALT: fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman. bioRxivGoogle Scholar
  19. Huson, D., Weber, N. (2013) Microbial community analysis using MEGAN. Methods Enzymol. 531, 465–85CrossRefPubMedGoogle Scholar
  20. Jiang, H., Lei, R., Ding, S., Zhu, S. (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15 (182), 1–12Google Scholar
  21. Koch, H., Schmid-Hempel, P. (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. 108 (48), 19288–92CrossRefPubMedPubMedCentralGoogle Scholar
  22. Koch, H., Abrol, D. P., Li, J., Schmid-Hempel, P. (2013) Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028–44CrossRefPubMedGoogle Scholar
  23. Kunieda, T., Fujiyuki, T., Kucharski, R., Foret, S., Ament, S. A., et al. (2006) Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol. Biol. 15 (5), 563–76CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kwong, W. K., Moran, N. A. (2016) Gut microbial communities of social bees. Nat. Rev. Microbiol. 14 (6), 374–84CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kwong, W. K., Engel, P., Koch, H., Moran, N. A. (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc. Natl. Acad. Sci. 111 (31), 11509–14CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kwong, W. K., Medina, L. A., Koch, H., Sing, K., Jia, E., Soh, Y., Ascher, J. S., Jaffé, R., Moran, N. A. (2017) Dynamic microbiome evolution in social bees. Sci. Adv. 3 (e1600513), 1–17Google Scholar
  27. Maes, P. W., Rodrigues, P. A., Oliver, R., Mott, B. M., Anderson, K. E. (2016) Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–50CrossRefPubMedGoogle Scholar
  28. Martín-Hernandez, R., Aranzazu, M., García-Palencia, P., Marín, P., Botías, C., Garrido-Bailo, E., Barrios, L., Higes, M. (2009) Effect of temperature on the biotic potential of honeybee Microsporidia. Appl. Environ. Microbiol. 75 (8), 2554–57CrossRefPubMedPubMedCentralGoogle Scholar
  29. Martinson, V. G., Danforth, B. N., Minckley, R. L., Rueppell, O., Tingek, S., Moran, N. A. (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–28CrossRefPubMedGoogle Scholar
  30. Martinson, V., Moy, J., Moran, N. A. (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78 (8), 2830–40CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meeus, I., De Graaf, D. C., Jans, K., Smagghe, G. (2010) Multiplex PCR detection of slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-range primers. J. Appl. Microbiol. 109, 107–15PubMedGoogle Scholar
  32. Moran, N. A. (2015) Genomics of the honey bee microbiome. Curr. Opin. Insect Sci. 10, 22–28CrossRefPubMedPubMedCentralGoogle Scholar
  33. Powell, J. E., Martinson, V. G., Urban-Mead, K., Moran, A. (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80 (23), 7378–87CrossRefPubMedPubMedCentralGoogle Scholar
  34. Retschnig, G., Williams, G. R., Schneeberger, A., Neumann, P. (2017) Cold ambient temperature promotes Nosema spp. intensity in honey bees (Apis mellifera). Insects 8 (1), 1–12CrossRefGoogle Scholar
  35. Romanelli, A., Moggio, L., Montella, C., Campiglia, P., Iannaccone, M., Capuano, F., Capparelli, R. (2011) Peptides from royal jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J. Pept. Sci. 17, 348–52CrossRefPubMedGoogle Scholar
  36. Ryu, A. J., Kim, S., Lee, H., Bai, J. Y., Nam, Y., et al. (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319 (5864), 777–82CrossRefPubMedGoogle Scholar
  37. Scarborough, C., Ferrari, J., Godfray, H. (2005) Aphid protected from pathogen by endosymbiont. Science 310, 1781CrossRefPubMedGoogle Scholar
  38. Schluter, J., Foster, K. R. (2012) The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10 (11)Google Scholar
  39. Schwarz, R. S., Moran, N. A., Evans, J. D. (2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. 113 (33), 9345–50CrossRefPubMedPubMedCentralGoogle Scholar
  40. Segers, F. H. I. D., Ke, L., Kosoy, M., Engel, P. (2017) Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME J. in press, 1–13Google Scholar
  41. Severson, D. W., Erickson, E. H. (1984) Honey bee (Hymenoptera: Apidae) colony performance in relation to supplemental carbohydrates. J. Econ. Entomol. 77 (6), 1473–78CrossRefGoogle Scholar
  42. Silverman, N., Paquette, N. (2008) The right resident bugs. Science 319 (5864), 734–35CrossRefPubMedGoogle Scholar
  43. Traver, B. E., Williams, M. R., Fell, R. D. (2012) Comparison of within hive sampling and seasonal activity of Nosema ceranae in honey bee colonies. J. Invertebr. Pathol. 109 (2), 187–93CrossRefPubMedGoogle Scholar
  44. Traynor, K., Rennich, K., Forsgren, E., Rose, R., Pettis, J., et al. (2016) Multiyear survey targeting disease incidence in US honey bees. Apidologie 47, 325–47CrossRefGoogle Scholar
  45. vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., et al. (2009) Colony collapse disorder: a descriptive study. PLoS One 4 (8)Google Scholar
  46. Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., Olofsson, T. C. (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7 (3)Google Scholar
  47. Viuda-Martos, C., Ruiz-Navajas, Y., Fernandez-Lopez, J., Perez-Alvarez, J. (2008) Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73 (9), 117–24CrossRefGoogle Scholar
  48. Wheeler, M. M., Robinson, G. E. (2014) Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Sci. Rep. 4 (5726), 1–5Google Scholar
  49. Wilfert, L., Long, G., Legget, H. C., Schmid-Hempel, P., Butlin, R., Martin, S., Boots, M. (2016) Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351 (6273), 594–97CrossRefPubMedGoogle Scholar
  50. Zheng, H., Nishida, A., Kwong, W. K., Engel, P., Steele, M. I., and Moran, N. A. (2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio 7 (6), 1–9CrossRefGoogle Scholar
  51. Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C., Moran, N. A. (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. 114 (18), 4775–80CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Institute for Animal ScienceUniversity of HohenheimStuttgartGermany
  2. 2.Apicultural State InstituteUniversity of HohenheimStuttgartGermany
  3. 3.Quantitative Biology CenterUniversity of TübingenTübingenGermany
  4. 4.Center for BioinformaticsUniversity of TübingenTübingenGermany

Personalised recommendations