, Volume 49, Issue 2, pp 243–251 | Cite as

Co-occurrence of RNA viruses in Tasmanian-introduced bumble bees (Bombus terrestris) and honey bees (Apis mellifera)

  • Elisabeth Fung
  • Kelly Hill
  • Katja Hogendoorn
  • Andrew B. Hingston
  • Richard V. Glatz
Original article


A number of bee RNA viruses, including Deformed wing virus (DWV), are so far unreported from Australia. These viruses can be introduced together with imported live honey bees (Apis mellifera) and their products, with other bee species, and bee parasites. Given that bee viruses have a profound impact on bee health, it is surprising that since the introduction of bumble bees (Bombus terrestris) onto Tasmania in 1992 from New Zealand, no work has been done to investigate which RNA viruses are associated with these bees. Consequently, we investigate the current prevalence of RNA viruses in B. terrestris and A. mellifera collected in south-eastern Tasmania. We did not find DWV in either A. mellifera and B. terrestris. However, both bee species shared Kashmir bee virus (KBV) and Sacbrood virus (SBV), but Black queen cell virus (BQCV) was detected only in A. mellifera. This reinforces the importance of ongoing strong regulation of the anthropogenic movement of live bees and their products.


Apis mellifera Bombus terrestris RNA viruses Tasmania Australia 



We thank the Holsworth Wildlife Research Endowment—Equity Trustees for their continued and generous financial support, which was essential for molecular analysis of our samples. We thank Stephen Pederson (The University of Adelaide) for his help in using R. We are grateful to the anonymous reviewers for constructive suggestions that improved substantially the manuscript.

Author contributions

EF: designed and performed experiment and data analyses, and wrote the paper. KH, KH, RG: experiment design, technical assistance, and edition of the paper. AH: sample collection and edition of the paper. All authors read and approved the final manuscript.

Supplementary material

13592_2017_549_MOESM1_ESM.pdf (197 kb)
ESM 1 (PDF 197 kb)


  1. Allen M., B. Ball. (1996) The incidence and world distribution of honey bee viruses. Bee World 77(3): 141–162.CrossRefGoogle Scholar
  2. Anderson D. (1985) Viruses of New Zealand honey bees. New Zealand Beekeeper (188): 8–10.Google Scholar
  3. Anderson D.L. (1991) Kashmir bee virus—a relatively harmless virus of honey-bee colonies. Am. Bee J. 131(12): 767–770.Google Scholar
  4. Anderson D.L., A.J. Gibbs. (1988) Inapparent virus-infections and their interactions in pupae of the honey bee (Apis mellifera Linnaeus) in Australia. J. Gen. Virol. 69: 1617–1625.CrossRefGoogle Scholar
  5. Ball B., L. Bailey. (1991) Viruses of honey bees, in: Adams J.R. and Bonami J.R. (Eds.), Atlas of invertebrate viruses, CRC Press, Inc., Boca Raton, pp. 525–551.Google Scholar
  6. Beekman M., F.L.W. Ratnieks. (2000) Long-range foraging by the honey-bee, Apis mellifera L. Funct. Ecol. 14(4): 490–496.CrossRefGoogle Scholar
  7. Brown M.J.F., I. Fries. (2007) Evolutionary epidemiology of virus infections in honey bees, in: Aubert M., Ball B., Fries I., Moritz R., Milani N., and Bernardinelli I. (Eds.), Virology and the honey bee, European Communites, Belgium pp. 279–306.Google Scholar
  8. Campbell B., J. Heraty, J.Y. Rasplus, K. Chan, J. Steffen-Campbell, et al. (2000) Molecular systematics of the Chalcidoidea using 28S-D2 rDNA, in: Austin A.D. and Dowton M. (Eds.), Hymenoptera: evolution, biodiversity and biological control., CSIRO, Collingwood, pp. 59–73.Google Scholar
  9. de Miranda J.R., G. Cordoni, G. Budge. (2010) The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J. Invertebr. Pathol. 103: S30-S47.CrossRefPubMedGoogle Scholar
  10. Fürst M.A., D.P. McMahon, J.L. Osborne, R.J. Paxton, M.J.F. Brown. (2014) Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506(7488): 364–366.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Glatz R.V. (2015) Curious case of the Kangaroo Island honeybee Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) sanctuary. Austral Entomol. 54(2): 117–126.CrossRefGoogle Scholar
  12. Goulson D., W.O.H. Hughes. (2015) Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 191: 10–19.CrossRefGoogle Scholar
  13. Graystock P., D. Goulson, W.O.H. Hughes. (2014) The relationship between managed bees and the prevalence of parasites in bumblebees. Peerj 2. e522.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Graystock P., J.C. Jones, T. Pamminger, J.F. Parkinson, V. Norman, et al. (2016) Hygienic food to reduce pathogen risk to bumblebees. J. Invertebr. Pathol. 136: 68–73.CrossRefPubMedGoogle Scholar
  15. Hagen M., Wikelski, M., Kissling, W.D. (2011) Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. Plos One 6(5).Google Scholar
  16. Hingston A.B. (2005) Does the introduced bumblebee, Bombus terrestris (Apidae), prefer flowers of introduced or native plants in Australia? Aust. J. Zool. 53(1): 29–34.CrossRefGoogle Scholar
  17. Hingston A.B., J. Marsden-Smedley, D.A. Driscoll, S. Corbett, J. Fenton, et al. (2002) Extent of invasion of Tasmanian native vegetation by the exotic bumblebee Bombus terrestris (Apoidea : Apidae). Austral Ecol. 27(2): 162–172.CrossRefGoogle Scholar
  18. Hingston A.B., P.B. McQuillan. (1998) Does the recently introduced bumblebee Bombus terrestris (Apidae) threaten Australian ecosystems? Aust. J. Ecol. 23(6): 539–549.CrossRefGoogle Scholar
  19. Hopkins I. (1886) The illustrated Australasian bee manual and complete guide to modern bee culture in the southern hemisphere. H. H. Hayr & Co., Agents Auckland.Google Scholar
  20. Hornitzky M., R. McDonald, G. Kleinschmidt. (1990) Commercial beekeeping in Tasmania. Honey Research Council, Kingston.Google Scholar
  21. Hornitzky M.A. (1987) Prevalence of virus-infections of honeybees in Eastern Australia. J. Apic. Res. 26(3): 181–185.CrossRefGoogle Scholar
  22. King A., M. Adams, E. Carstens, E. Lefkowitz. (2012) Virus taxonomy - Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Inc., San Diego.Google Scholar
  23. Levitt A.L., R. Singh, D.L. Cox-Foster, E.G. Rajotte, K. Hoover, et al. (2013) Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176(1–2): 232–240.CrossRefPubMedGoogle Scholar
  24. Manley R., M. Boots, L. Wilfert. (2015) Emerging viral disease risk to pollinating insects: ecological, evolutionary and anthropogenic factors. J. Appl. Ecol. 52(2): 331–340.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Martin S.J., A.C. Highfield, L. Brettell, E.M. Villalobos, G.E. Budge, et al. (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336(6086): 1304–1306.CrossRefPubMedGoogle Scholar
  26. Mazzei M., Carrozza, M.L., Luisi, E., Forzan, M., Giusti, M., et al. (2014) Infectivity of DWV associated to flower pollen: experimental evidence of a horizontal transmission route. Plos One 9(11).Google Scholar
  27. McMahon D.P., M.A. Fürst, J. Caspar, P. Theodorou, M.J.F. Brown, et al. (2015) A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84(3): 615–624.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mondet F., de Miranda, J.R., Kretzschmar, A., Le Conte, Y., Mercer, A.R. (2014) On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 10(8).Google Scholar
  29. Neumann P., N.L. Carreck. (2010) Honey bee colony losses. J. Apic. Res. 49(1): 1–6.CrossRefGoogle Scholar
  30. Ongus J.R., D. Peters, J.M. Bonmatin, E. Bengsch, J.M. Vlak, et al. (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J. Gen. Virol. 85: 3747–3755.CrossRefPubMedGoogle Scholar
  31. Osborne J.L., S.J. Clark, R.J. Morris, I.H. Williams, J.R. Riley, et al. (1999) A landscape-scale study of bumblebee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36(4): 519–533.CrossRefGoogle Scholar
  32. Palacios G., J. Hui, P.L. Quan, A. Kalkstein, K.S. Honkavuori, et al. (2008) Genetic analysis of Israel acute paralysis virus: distinct clusters are circulating in the United States. J. Virol. 82(13): 6209–6217.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Peng W.J., J. Li, H. Boncristiani, J.P. Strange, M. Hamilton, et al. (2011) Host range expansion of honeybee Black queen cell virus in the bumblebee, Bombus huntii. Apidologie 42(5): 650–658.CrossRefGoogle Scholar
  34. R Core Team (2016) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna.Google Scholar
  35. Radzeviciute R., P. Theodorou, M. Husemann, G. Japoshvili, G. Kirkitadze, et al. (2017) Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. J. Invertebr. Pathol. 146: 14–23.CrossRefPubMedGoogle Scholar
  36. Roberts J., D. Anderson. (2013) Establishing the disease status of the Asian honeybee in the Cairns region, Rural Industries Research & Development Corporation (RIRDC) Canberra.Google Scholar
  37. Roberts J., D. Anderson, P. Durr. (2015) Upgrading knowledge on pathogens (particularly viruses) of Australian honey bees, Rural Industries Research & Development Corporation (RIRDC) CanberraGoogle Scholar
  38. Rosenkranz P., P. Aumeier, B. Ziegelmann. (2010) Biology and control of Varroa destructor. J. Invertebr. Pathol. 103: S96-S119.CrossRefPubMedGoogle Scholar
  39. Semmens T.D., E. Turner, R. Buttermore. (1993) Bombus terrestris (L) (Hymenoptera, Apidae) now established in Tasmania. J. Aust. Entomol. Soc. 32: 346–346.CrossRefGoogle Scholar
  40. Singh R., A.L. Levitt, E.G. Rajotte, E.C. Holmes, N. Ostiguy, et al. (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PloS One 5(12): 1–16.CrossRefGoogle Scholar
  41. vanEngelsdorp D., J.D. Evans, C. Saegerman, C. Mullin, E. Haubruge, et al. (2009) Colony collapse disorder: a descriptive study. Plos One 4(8): e6481.CrossRefPubMedPubMedCentralGoogle Scholar
  42. vanEngelsdorp D., M.D. Meixner. (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103: S80-S95.CrossRefPubMedGoogle Scholar
  43. Wilfert L., G. Long, H.C. Leggett, P. Schmid-Hempel, R. Butlin, et al. (2016) Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351(6273): 594–597.CrossRefPubMedGoogle Scholar
  44. Zhang Z.-Q. (2000) Notes on Varroa destructor (Acari: Varroidae) parasitic on honeybees in New Zealand. Syst. Appl. Acarol. Spec. Publ. 5: 9–14.Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia
  2. 2.South Australian Research and Development Institute (SARDI)AdelaideAustralia
  3. 3.School of Land and FoodUniversity of TasmaniaHobartAustralia
  4. 4.D’Estrees Entomology & Science ServicesMacGillivrayAustralia
  5. 5.South Australian Museum, Terrestrial InvertebratesAdelaideAustralia

Personalised recommendations