Interaction with plants
Between 2006 and 2011, T. laticeps was recorded visiting flowers of two out of 54 plant species on which visitation observations were conducted: O. sulphurea (Opuntiaceae; 18 out of 22 visits, 82 %; Supplementary Material Fig. S1A) and Zuccagnia punctata (Fabaceae; 4 visits, 18 %). The specialization index of T. laticeps was d = 0.48, which placed it among the 16 % most specialized species of flower visitors in this community (mean ± SD of d 0.31 ± 0.18; range 0–0.87) when considering only flower visitation observations (but see below results of nest pollen analysis).
When visiting flowers of O. sulphurea, female T. laticeps usually lied sideways to enter the flower’s corolla under the stamina, staying in this position for the whole duration of the visit. Presumably, this rather unusual position may help the bee avoid the stamina (Schlindwein and Wittmann 1997), as many Opuntia species are known to move them in response to a mechanical stimulus (Spegazzini 1900), a behavior also observed in O. sulphurea (R. Kiessling, pers. comm.).
O. sulphurea was by far the most common species in nest pollen provisions, representing by 90–100 % of pollen content in all nests (Figure 1). In this sense, T. laticeps appears to be highly oligolectic. However, most nests had ca. 5 % of pollen of either Prosopis flexuosa (Fabaceae; 70 % of nests) or Cerastium arvense (Caryophyllaceae; 20 % of nests). Other species occurred rarely, including Larrea spp. (Zygophyllaceae), Sphaeralcea mendocina and Lecanophora heterophylla (Malvaceae), Acantholippia seriphioides (Verbenaceae), Pyrrhocactus sp. (Opuntiaceae), Capparis atamisquea (Capparaceae), and Senna aphylla (Fabaceae). The rare but pervasive presence of P. flexuosa and C. arvense had no significant effects on any of the three proxies of female reproductive success: length of pollen mass (ANOVA: F = 0.95, df = 4, P = 0.4372), number of cocoons built (ANOVA: F = 1.86, df = 4, P = 0.1254), and number of adults emerged per nest (ANOVA: F = 0.60, df = 4, P = 0.6625).
Roughgarden’s (1974) specialization indices also indicate oligolecty. TNW was rather small (2008: TNW = 0.24; 2009: TNW = 0.26), suggesting high specialization. This high population-level specialization did not result from individual specialization on different resources, as WIC/TNW was relatively high (2008: WIC/TNW = 0.85; 2009: WIC/TNW = 0.76). Thus, the population as a whole appears to be specialized on few floral resources, with relatively substantial overlap among individuals in their feeding habits.
The strong association of T. laticeps to O. sulphurea indicated by the extremely high proportion of pollen of this species in nests was also evident by the patterns of spatial co-occurrence between the two species. Spatially, T. laticeps was absent from all sites without O. sulphurea, and present only in sites with this plant species, even if extremely rare. This pattern of spatial co-occurrence was highly significant (χ
2 = 8.56, df = 1; P = 0.031). Temporally, we observed a similar pattern, with no nests recorded before the first flower of O. sulphurea observed in the field (no negative delay between starts bee minus plant event was observed), despite high inter-annual variability in weather conditions (Figure 2). Again, this pattern was highly significant (χ
2 = 18.81, df = 1, P = 0.0015). The mean duration of flowering time in O. sulphurea was 40 days (range = 14–63 days), and the mean duration of nesting activity in T. laticeps was 29 days (range = 1–69 days).
Nesting phenology
Of the 80 trap nests set up to study nesting phenology in 2009, only 11 were occupied by T. laticeps, one of them shared with Anthidium vigintipunctatum (Hymenoptera: Megachilidae). Two of these nests were lost to attacks by unidentified ants. In the remaining nine nests, the length of the egg/feeding larval period was 2–6 weeks, after which (between late December and late January) each larva built a cocoon and entered diapause. In all but two nests, provisioning was complete by early to mid-December, overlapping completely with the flowering period of O. sulphurea. The other two nests were detected in the late summer in the cocoon stage; based on their developmental times, they were presumably built in January, and several weeks after the flowering of O. sulphurea had ended. Interestingly, the number of cells in these two nests was lower than in the other seven nests (mean 5.5 cells per nest vs. 11.6 cells per nest, respectively).
Immature stages in most nests spent only one winter in diapause, so that adults emerged in the following spring (Figure 3). However, some adults emerged after two winters (e.g., 25 % nests in 2008, 13 % in 2009).
Nest architecture
Although females of T. laticeps occupied the preexisting cavities in our trap nests, they widened the hole by tearing wood with their mandibles. It is important to point out here that because our trap nests had only one longitudinal cavity (Fig. S1C–E), all nests recorded in our trap nests were longitudinal; however, we observed in a few nests signs of lateral burrowing activity, indicating that females may have tried to branch the nest. Of the three hole diameters used in our study, the smallest was never used by T. laticeps, as it probably was too small for the adult female. In addition to trap nests, we also found one natural nest of T. laticeps in a dead branch of the exotic tree Schinus molle var areira (L.) DC. (Anacardiaceae). We followed the female’s activity during nesting provisioning for 2 weeks, but unfortunately, the branch of the tree where the nest was located was pruned afterwards, which prevented us from pursuing these observations further.
All nests lacked a closure at the entrance of the nest, which allowed seeing the pollen from the outside. The cells of all nests were unlined wood cavities filled with continuous pollen mass. Eggs were laid at roughly regular distances (ca. 2 cm) within the pollen mass (Fig. S1C). Only a handful of nests had vertical partitions, made with wood pieces and pollen. Pollen was fairly dry and loose and lacked cohesiveness, breaking apart easily when removed from the nest; however, pollen around eggs was wet and hardened. For approximately two weeks after eggs were laid larvae feed from pollen matrix (Fig. S1D). By the time cocoons had been built, most pollen had been consumed by larvae, and cocoons were surrounded by abundant feces and pollen remains (Fig. S1E). The cocoon is oval (maximum diameter 2 ± 0.5 cm), brown and rough, lacking a nipple (protruding thickened spot), and is as broad as the tunnel diameter (0.8 or 1.1 cm in our study). The cocoon’s coat has two layers: the inner layer is brown, thin, and smooth; the outer layer is coarse and hard, covered by larval feces. This coat is harder than in other solitary bees present in the study site and was extremely resistant to the pressure applied by the observers’ fingers.
In the 11 nests studied in 2009 to describe intra-annual nesting phenology, the nest pollen mass occupied on average ca. 75 % of the available space in the trap nest cavity. Nests had an average of eight eggs (range 2–16). Of the original eggs laid in nests, 33 % died during the egg stage, 18 % died in the larval stage, and 14 % died inside the cocoon; only 46 % eggs reached the adult stage in the lab, 49 % of which were females (Figure 3).
Nest associates
Although other species of solitary bees, wasps, beetles, spiders and their parasites, occupy nests of other bee species in our study area, T. laticeps shared the nest cavity rarely with two other solitary bee species: the carder bee A. vigintipunctatum (0.06 % nests in all years) and the carpenter bee Xylocopa atamisquensis (0.05 % nests in all years). Nest development did not seem to be affected by such coexistence.
A few nests of T. laticeps were attacked by unidentified ants during the egg stage, after which development stopped; however, the proportion of attacked nests was low in all years of study (0.01 % from 83 nests in 2008, 0.15 % from 35 nests in 2009, 0.03 % from 23 nests in 2010, and 0.05 % from 36 in 2011).
We found only one cleptoparasite species in our study, Leucospis hopei Westwood, 1834 (Hymenoptera: Chalcidoidea; Fig. S1B). Seven parasite individuals emerged from one single trap nest; amidst the cocoon debris, we found dead T. laticeps larvae that presumably died soon after cocoon construction. It is worthy of note that this nest came from the highest study site, located at 1965 m above sea level.