Advertisement

Apidologie

, Volume 46, Issue 3, pp 315–325 | Cite as

The use of a within-hive replication bioassay method to investigate the phagostimulatory effects of pollen, bee bread and pollen extracts, on free-flying honey bee colonies

  • Richard James BridgettEmail author
  • William Daniel John Kirk
  • Falko Pieter Drijfhout
Original article

Abstract

A method for conducting multiple-choice bioassays, incorporating within-hive replication, is described and demonstrated here. This method has been used to study the influence of phagostimulants in pollens on food uptake within honey bee colonies. Experiments using bee-collected trapped pollens and a sample of stored bee bread suggest that there is little or no difference in the preference of bees towards fresh pollen or bee bread. Further work using solvent extracts of pollen showed that phagostimulants are easily extractable in sufficient quantities to increase the consumption of artificial diet in field-based colonies, despite alternative natural forage being available. Data indicate that the addition of polar solvent extracts of pollen increases diet consumption more than less polar extracts. Isolating and identifying phagostimulants could contribute towards production of a range of more palatable artificial diets than those currently available.

Keywords

Apis mellifera phagostimulant diet feeding forage 

Notes

Acknowledgments

This research was supported by the Perry Foundation and the British Beekeepers Association (BBKA). We thank David Buckley for the loan of his colonies and practical beekeeping support, and David Aston and Pam Hunter of the BBKA Technical Committee for their specialist advice.

References

  1. Aston, D. (2010) Honey bee winter loss survey for England, 2007–8. J. Apic. Res. 49(1), 111–112CrossRefGoogle Scholar
  2. Avni, D., Dag, A., Shafir, S. (2009) The effect of surface area of pollen patties fed to honey bee (Apis mellifera) colonies on their consumption, brood production and honey yields. J. Apic. Res. 48(1), 23–28CrossRefGoogle Scholar
  3. Brodschneider, R., Crailsheim, K. (2010) Nutrition and health in honey bees. Apidologie 41(3), 278–294CrossRefGoogle Scholar
  4. Carreck, N., Neumann, P. (2010) Honey bee colony losses. J. Apic. Res. 49(1), 1–6CrossRefGoogle Scholar
  5. DeGrandi-Hoffman, G., Chen, Y., Huang, E., Huang, M. (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56(9), 1184–1191CrossRefPubMedGoogle Scholar
  6. Dobson, H., Bergstrom, G. (2000) The ecology and evolution of pollen odors. Plant Syst. Evol. 222(1–4), 63–87CrossRefGoogle Scholar
  7. Doull, K. (1973) Relationships between pollen, broodrearing and consumption of pollen supplements by honeybees. Apidologie 4(4), 285–293CrossRefGoogle Scholar
  8. Doull, K. (1974a) Effect of distance on the attraction of pollen to honeybees in the hive. J. Apic. Res. 13(1), 27–32Google Scholar
  9. Doull, K. (1974b) Effects of attractants and phagostimulants in pollen supplement on the feeding behaviour of honeybees in the hive. J. Apic. Res. 13(1), 47–54Google Scholar
  10. Doull, K., Standifer, L. (1970) Feeding responses of hoheybees in the hive. J. Apic. Res. 9(3), 129–132Google Scholar
  11. Gilliam, M., Prest, D., Lorenz, B. (1989) Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie 20(1), 53–68CrossRefGoogle Scholar
  12. Herbert, E., Shimanuki, H. (1978) Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie 9(1), 33–40CrossRefGoogle Scholar
  13. Herbert, E., Shimanuki, H., Shasha, B. (1980) Brood rearing and food consumption by honeybee colonies fed pollen substitutes supplemented with starch-encapsulated pollen extracts. J. Apic. Res. 19(2), 115–118Google Scholar
  14. Hopkins, C., Jevans, A., Boch, R. (1969) Occurrence of octadeca-trans-2, cis-9, cis-12-trienoic acid in pollen attractive to the honey bee. Can. J. Biochem. 47(4), 433–436CrossRefPubMedGoogle Scholar
  15. Loper, G., Standifer, L., Thompson, M., Gilliam, M. (1980) Biochemistry and Microbiology of bee-collected almond (Prunus dulcis) pollen and bee bread. Apidologie 11(1), 63–73CrossRefGoogle Scholar
  16. Manning, R., Rutkay, A., Eaton, L., Dell, B. (2007) Lipid-enhanced pollen and lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L.). Aust. J. Entomol. 46(3), 251–257CrossRefGoogle Scholar
  17. Pacini, E., Hesse, M. (2005) Pollenkitt—its composition, forms and functions. Flora 200(5), 399–415CrossRefGoogle Scholar
  18. Pernal, S., Currie, R. (2000) Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31(3), 387–409CrossRefGoogle Scholar
  19. Potts, S., Roberts, S., Dean, R., Marris, G., Brown, M., Jones, R., Neumann, P., Settele, J. (2010) Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49(1), 15–22CrossRefGoogle Scholar
  20. Robinson, F., Nation, J. (1968) Substances that attract caged honeybee colonies to consume pollen supplements and substitutes. J. Apic. Res. 7(2), 83–88Google Scholar
  21. Saffari, A., Kevan, P., Atkinson, J. (2010a) Consumption of three dry pollen substitutes in commercial apiaries. J. Apic. Sci. 54(1), 5–12Google Scholar
  22. Saffari, A., Kevan, P., Atkinson, J. (2010b) Palatability and consumption of patty-formulated pollen and pollen substitutes and their effects on honeybee colony performance. J. Apic. Sci. 54(2), 63–71Google Scholar
  23. Schmidt, J. (1984) Feeding preferences of Apis mellifera L. (Hymenoptera: Apidae): Individual versus mixed pollen species. J. Kansas Entomol. Soc. 57(2), 323–327Google Scholar
  24. Schmidt, J. (1985) Phagostimulants in pollen. J. Apic. Res. 24(2), 107–114Google Scholar
  25. Schmidt, J., Hanna, A. (2006) Chemical nature of phagostimulants in pollen attractive to honeybees. J. Insect Behav. 19(4), 521–532CrossRefGoogle Scholar
  26. Schmidt, J., Thoenes, S., Levin, M. (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Am. 80(2), 176–183CrossRefGoogle Scholar
  27. Schmidt, L., Schmidt, J., Rao, H., Wang, W., Xu, L. (1995) Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88(6), 1591–1595CrossRefGoogle Scholar
  28. Somerville, D. (2005) Fat bees skinny bees—a manual on honey bee nutrition for beekeepers. Rural Industries Research and Development Corporation, BartonGoogle Scholar
  29. Standifer, L., (1980) Honey bee nutrition and supplemental feeding: in US Department of Agriculture Handbook, 335 39–45Google Scholar
  30. Van der Steen, J. (2007) Effect of a home-made pollen substitute on honey bee colony development. J. Apic. Res. 46(2), 114–119CrossRefGoogle Scholar
  31. Van Engelsdorp, D., Hayes, J., Underwood, R., Pettis (2008) A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE 3(12), e4071CrossRefPubMedGoogle Scholar
  32. Van Engelsdorp, D., Hayes, J., Underwood, R., Pettis (2010) A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 49(1), 7–14CrossRefGoogle Scholar
  33. Vasquez, A., Olofsson, T. (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 48(3), 189–195CrossRefGoogle Scholar
  34. Van der Zee, R., Pisa, L., Andonov, S., Brodschneider, R., Charriere, J., et al. (2012) Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J. Apic. Res. 51(1), 100–114CrossRefGoogle Scholar
  35. Williams, G., Alaux, C., Costa, C., Csaki, T., Doublet, V. (2013) Standard methods for maintaining Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 52(1), 1–36CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2014

Authors and Affiliations

  • Richard James Bridgett
    • 1
    Email author
  • William Daniel John Kirk
    • 2
  • Falko Pieter Drijfhout
    • 1
  1. 1.Chemical Ecology Group, School of Physical and Geographical SciencesKeele UniversityStaffordshireUK
  2. 2.School of Life SciencesKeele UniversityStaffordshireUK

Personalised recommendations