, Volume 46, Issue 2, pp 224–237 | Cite as

Dispersal ability of male orchid bees and direct evidence for long-range flights

  • Tamara Pokorny
  • Dirk Loose
  • Gerald Dyker
  • J. Javier G. Quezada-Euán
  • Thomas Eltz
Original article


Male Neotropical orchid bees collect volatile chemicals from various sources in the environment in order to compose their characteristic perfume bouquets. Amongst other plants, over 600 species of orchids are exclusively pollinated by the bees during their quest for volatiles. Since the plants usually have a scattered distribution, it is assumed that orchid bees can transport the pollinaria across several kilometres due to their flight capabilities and a high dispersal potential. Until now, very long-range flight distances (up to 45 km) of male orchid bees have only been indirectly inferred from habitat requirements of orchids whose pollinaria were carried by captured males, whereas the distances established by direct measures (mark and recapture, radio telemetry) only span distances of up to around 6 km. The discrepancy between inferred and proven distances led us to readdress the question of dispersal ability of male orchid bees. In this study, we used tag, scratch and chemical marking of large numbers of bees to clarify two aspects: (1) the effect of moderate natural obstacles on dispersal and (2) the possibility of very long-range movements across a terrain lacking such obstacles. Our results suggest that a moderate natural obstacle (a valley separating opposite ridges) does not restrain orchid bee movements. Individual bees achieved extraordinary flight distances of more than 50 km across even terrain, extending the directly proven flight distances of male bees by more than an order of magnitude.


Euglossini orchid pollination long distance dispersal gene flow population genetics 



M. Hannibal, N. Blumreiter, I. Vogler, L. Roßmannek, H. Hausmann, J. Henske, C. Castillo, A. Durán Yáñez and R. Guillermo helped with bee capture and marking. Funding was provided by the German Science Foundation (EL249/6) and the PROALMEX program (120989) of the German Academic Exchange Service and the Consejo Nacional de Ciencia y Tecnología (103341) to T.E. and J.Q.E. We want to thank two anonymous reviewers for contributing to improve the manuscript.

Supplementary material

13592_2014_317_MOESM1_ESM.docx (26 kb)
ESM 1 (DOCX 25 kb)
13592_2014_317_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 20 kb)


  1. Ackerman, J.D. (1983) Diversity and seasonality of male euglossine bees (Hymenoptera: Apidae) in Central Panamá. Ecology 64, 274–283CrossRefGoogle Scholar
  2. Ackerman, J.D. (1986) Coping with the epiphytic existence: pollination strategies. Selbyana 9, 52–60Google Scholar
  3. Ackerman, J.D. (1989) Geographic and seasonal variation in fragrance choices and preferences of male euglossine bees. Biotropica 21, 340–347CrossRefGoogle Scholar
  4. Ackerman, J.D., Montalvo, A.M. (1985) Longevity of euglossine bees. Biotropica 17, 79–81CrossRefGoogle Scholar
  5. Ackerman, J.D., Mesler, M.R., Lu, K.L., Montalvo, A.M. (1982) Food-foraging behavior of male euglossini (Hymenoptera: Apidae): vagabonds or trapliners? Biotropica 14, 241–248CrossRefGoogle Scholar
  6. Andrade-Silva, A.C.R., Nascimento, F.S. (2012) Multifemale nests and social behavior in Euglossa melanotricha (Hymenoptera, Apidae, Euglossini). J. Hymenoptera Res. 26, 1–16CrossRefGoogle Scholar
  7. Armbruster, W.S., Webster, G.L. (1979) Pollination of two species of Dalechampia (Euphorbiaceae) in Mexico by euglossine bees. Biotropica 11, 278–283CrossRefGoogle Scholar
  8. Augusto, S.C., Garófalo, C.A. (2004) Nesting biology and social structure of Euglossa (Euglossa) townsendi Cockerell (Hymenoptera, Apidae, Euglossini). Insectes Soc. 51, 400–409CrossRefGoogle Scholar
  9. Cappellari, S.C., Harter-Marques, B. (2010) First report of scent collection by male orchid bees (Hymenoptera: Apidae: Euglossini) from terrestrial mushrooms. J. Kansas Entomol. Soc. 83, 264–266CrossRefGoogle Scholar
  10. Cranmer, L., McCollin, D., Ollerton, J. (2012) Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121, 562–568CrossRefGoogle Scholar
  11. Dodson, C.H., Hills, H.G., Adams, R.M., Williams, N.H. (1969) Biologically active compounds in orchid fragrances. Science 164, 1243–1249CrossRefPubMedGoogle Scholar
  12. Dressler, R.L. (1968) Observations on orchids and euglossine bees in Panama and Costa Rica. Rev. Biol. Trop. 15, 143–183Google Scholar
  13. Dressler, R.L. (1982) Biology of the orchid bees (Euglossini). Annu. Rev. Ecol. Syst. 13, 373–394CrossRefGoogle Scholar
  14. Eltz, T., Whitten, M.W., Roubik, D.W., Linsenmair, K.E. (1999) Fragrance collection, storage and accumulation by individual male orchid bees. J. Chem. Ecol. 25, 157–176CrossRefGoogle Scholar
  15. Eltz, T., Roubik, D.W., Lunau, K. (2005) Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behav. Ecol. Sociobiol. 59, 149–156CrossRefGoogle Scholar
  16. Eltz, T., Zimmermann, Y., Pfeiffer, C., Ramirez Pech, J., Twele, R., Francke, W., Quezada-Euan, J.J.G., Lunau, K. (2008) An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr. Biol. 18, 1844–1848CrossRefPubMedGoogle Scholar
  17. Hartter, J., Lucas, C., Gaughan, A.E., Aranda, L.L. (2008) Detecting tropical dry forest succession in a shifting cultivation mosaic of the Yucatán peninsula, Mexico. Appl. Geogr. 28, 134–149CrossRefGoogle Scholar
  18. Janzen, D.H. (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171, 203–205CrossRefPubMedGoogle Scholar
  19. Janzen, D.H. (1981) Bee arrival at two Costa Rican female Catasetum orchid inflorescences, and a hypothesis on euglossine population structure. Oikos 36, 177–183CrossRefGoogle Scholar
  20. Kimsey, L.S. (1984) The behavioural and structural aspects of grooming and related activities in euglossine bees (Hymenoptera: Apidae). J. Zool. 204, 541–550CrossRefGoogle Scholar
  21. Kroodsma, D.E. (1975) Flight distances of male euglossine bees in orchid pollination. Biotropica 7, 71–72CrossRefGoogle Scholar
  22. Lihoreau, M., Chittka, L., Raine, N.E. (2010) Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. Am. Nat. 176, 744–757CrossRefPubMedGoogle Scholar
  23. Pokorny, T., Hannibal, M., Quezada-Euan, J.J.G., Hedenström, E., Sjöberg, N., Bång, J., Eltz, T. (2013) Acquisition of species-specific perfume blends: influence of habitat-dependent compound availability on odour choices of male orchid bees (Euglossa spp.). Oecologia 172, 417–425CrossRefPubMedGoogle Scholar
  24. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  25. Raw, A. (1989) The dispersal of euglossine bees between isolated patches of eastern Brazilian wet forest (Hymenoptera, Apidae). Rev. Bras. Entomol. 33, 103–107Google Scholar
  26. Rocha Filho, L.C., Cerântola, N.C.M., Garófalo, C.A., Imperatriz-Fonseca, V.L., Lama, M.A. (2013) Genetic differentiation of the Euglossini (Hymenoptera, Apidae) populations on a mainland coastal plain and an island in southeastern Brazil. Genetica 141, 65–74CrossRefPubMedGoogle Scholar
  27. Roubik, D. W., Hanson, P. E. (2004) Orchid bees of tropical America. Instituto Nacional de Biodiversidad (INBio)Google Scholar
  28. Silva, M.D., Andrade-Silva, A.C.R., Silva, M. (2011) Long-term male aggregations of Euglossa melanotricha Moure (Hymenoptera: Apidae) on fern fronds Serpocaulon triseriale (Pteridophyta: Polypodiaceae). Neotrop. Entomol. 40, 548–552CrossRefPubMedGoogle Scholar
  29. Skov, C., Wiley, J. (2005) Establishment of the neotropical orchid bee Euglossa viridissima (Hymenoptera: Apidae) in Florida. Fla. Entomol. 88, 225–227CrossRefGoogle Scholar
  30. Tonhasca, A.J., Albuquerque, G.S., Blackmer, J.L. (2003) Dispersal of euglossine bees between fragments of the Brazilian Atlantic Forest. J. Trop. Ecol. 19, 99–102CrossRefGoogle Scholar
  31. Vogel, S. (1966) Parfümsammelnde Bienen als Bestäuber von Orchidaceen und Gloxinia. Österr. Bot. Zeitschrift 113, 302–361CrossRefGoogle Scholar
  32. Whitten, M.W., Young, A.M., Stern, D.L. (1993) Nonfloral sources of chemicals that attract male euglossine bees (Apidae: Euglossini). J. Chem. Ecol. 19, 3017–3027CrossRefPubMedGoogle Scholar
  33. Wikelski, M., Moxley, J., Eaton-Mordas, A., López-Uribe, M.M., Holland, R., Moskowitz, D., Roubik, D.W., Kays, R. (2010) Large-range movements of neotropical orchid bees observed via radio telemetry. PLoS ONE 5, e10738CrossRefPubMedCentralPubMedGoogle Scholar
  34. Williams, N.H., Dodson, C.H. (1972) Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long distance pollen flow. Evolution 26, 84–95CrossRefGoogle Scholar
  35. Williams, N.H., Whitten, M.W. (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sequidecade. Biol. Bull. 164, 355–395CrossRefGoogle Scholar
  36. Zimmermann, Y., Ramírez, S.R., Eltz, T. (2009) Chemical niche differentiation among sympatric species of orchid bees. Ecology 90, 2994–3008CrossRefPubMedGoogle Scholar
  37. Zimmermann, Y., Schorkopf, D.L.P., Moritz, R.F.A., Pemberton, R.W., Quezada-Euan, J.J.G., Eltz, T. (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv. Genet. 12, 1183–1194CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2014

Authors and Affiliations

  • Tamara Pokorny
    • 1
  • Dirk Loose
    • 2
  • Gerald Dyker
    • 2
  • J. Javier G. Quezada-Euán
    • 3
  • Thomas Eltz
    • 1
  1. 1.Department of Animal Ecology, Evolution and BiodiversityRuhr University BochumBochumGermany
  2. 2.Department of Organic ChemistryRuhr University BochumBochumGermany
  3. 3.Departamento de ApiculturaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations