Skip to main content

Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions

Abstract

The toxicity and biochemical changes in honey bees (Apis mellifera) treated with four insecticides—acetamiprid, dinotefuran, pymetrozine, and pyridalyl—were evaluated under controlled laboratory conditions. Foraging bees were exposed to different dosages of tested insecticides by oral feeding at different dosages recommended by the manufacturers for agricultural crops in Egypt (0.01-, 0.02-, 0.04-, 0.1-, and onefold). Moreover, the acute toxicity of these insecticides was evaluated by topical application on the thorax of foragers to calculate the LD50 values. The specific activities of acetylcholinesterase (AChE), carboxylesterase, glutathione S-transferase (GST), and polyphenol oxidase (PPO) were measured in different tissues of surviving foragers after 24 h of treatment to explore the possible mode of action of insecticides and honey bees' strategies for detoxification and tolerance. The results indicated that regardless of how the bees were exposed to insecticides, dinotefuran was extremely toxic to adult A. mellifera (topical LD50 = 0.0006 μg/bee and oral feeding LC50 = 1.29 mg/L). Pyridalyl showed moderate toxicity compared to dinotefuran at the recommended application rate; however, acetamiprid and pymetrozine were relatively less toxic to bees (<25 % mortality at the recommended application rates). Data showed that tested insecticides varied in their influence on AChE, carboxylesterase, GST, and PPO activities that were highly correlated to their toxicity against A. mellifera. The biochemical analysis of carboxylesterase and GST showed that these enzymes detoxified the low doses of acetamiprid, pymetrozine, and pyridalyl, but not dinotefuran. Overall, our results are valuable not only in evaluating the toxicity of common insecticides onto honey bees, but also in highlighting the validity of enzymes activities as proper indicators for exposure to agrochemicals.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  • Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267

    Article  CAS  Google Scholar 

  • Abramson, C.I., Sokolowski, M.B.C., Brown, E.A., Pilard, S. (2012) The effect of pymetrozine (Plenum WG-50®) on proboscis extension conditioning in honey bees (Apis mellifera: Hybrid var. Buckfast). Ecotoxicol. Environ. Saf. 78, 287–295

    Article  CAS  PubMed  Google Scholar 

  • Acheampong, S., Stark, J.D. (2004) Can reduced rates of pymetrozine and natural enemies control the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae), on brocooli? Int. J. Pest. Manage., 50, 275–279

    Article  CAS  Google Scholar 

  • Adams, S.M., Shepard, K.K, Greeley, M.S., Jimenez, B.D., Ryan, M.G., Shugart, L.R., McCarthy, J.F., Hinton, D.E. (1989) The use of bioindicators for assessing the effects of pollutant stress on fish. Marine Environ. Res. 28, 459–464

    Article  CAS  Google Scholar 

  • Aliouane, Y., el Hassani, A.K., Gary, V., Armengaud, C., Lambin, M., Gauthier, M. (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. 28, 113–122

    Article  CAS  PubMed  Google Scholar 

  • Atkins, E.L., Kellum, D., Atkins, K.W. (1981) Reducing pesticides hazard to honey bees: Mortality prediction techniques and integrated management strategies. Division Agric. Sci. University of California, Leaf. 2883, 22 pp. (with: Supplemental list to leaflet 2883 compiled by E. Atkins, Nov. 1990

  • Badiou-Bénéteau, A., Meled, M., Belzunces, L.P. (2008) Honeybee Apis mellifera acetylcholinesterase - A biomarker to detect deltamethrin exposure. Ecotoxicol. Environ. Saf. 69, 246–253

    Article  Google Scholar 

  • Badiou-Bénéteau, A., Carvalho, S.M., Brunet, J.L., Carvalho, G.A., Bulete, A., Giroud, B., Belzunces, L.P. (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: Application to the systemic insecticide thiamethoxam. Ecotoxicol. Environ. Saf. 82, 22–31

    Article  PubMed  Google Scholar 

  • Belzunces, L., Tchamitchian, S., Brunet, J.L. (2012) Neural effects of insecticides in the honey bee. Apidologie. 43, 348–370

    Article  CAS  Google Scholar 

  • Blacquiere, T., Smagghe, G., Gestel, C.A.M.V., Mommaerts, V. (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunet, J.L., Badiou, A., Belzunces, L.P. (2005). In vivo metabolic fate of [14C] acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manage. Sci. 61, 742–748

    Article  CAS  Google Scholar 

  • Chanda, S.M., Mortensen, S.R., Moser, V.C., Padilla, S. (1997). Tissue-specificeffectsof chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo comparison. Fundam. Appl. Toxicol. 38, 148–157

    Article  CAS  PubMed  Google Scholar 

  • Costa, E.M., Araujo, E.L., Maia, A.V.P., Silva, F.E.L., Bezerra, C.E.S.; Silva, G.J. (2014) Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie 45, 34–44

    Article  CAS  Google Scholar 

  • Cresswell, J.E., Desneux, N., Vanengelsdorp, D. (2012) Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill’s epidemiological criteria. Pest Manag. Sci. 68, 819–827

    Article  CAS  PubMed  Google Scholar 

  • Currie, R.W. (1999) Fluvalinate queen tabs for use against Varroa jacobsoni: Efficacy and impact on honey bee, Apis mellifera, queen and colony performance. Am. Bee J. 139, 871–876

    Google Scholar 

  • Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delègue, M.H. (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybee under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57, 410–419

    Article  CAS  PubMed  Google Scholar 

  • Decourtye, A., Devillers, J., Genecque, E., Le Menach, K., Budzinski, H., Cluzeau, S., Pham-Delègue, M.H. (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol. 48, 242–250

    Article  CAS  PubMed  Google Scholar 

  • Desneux, N., Decourtye, A., Delpuech, J.M. (2007) The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52, 81–106

    Article  CAS  Google Scholar 

  • Elbert, C., Erdelen, C., Kuehnhold, J., Nauen, R., Schmidt, H.W., Hattori, Y. (2000). Thiacloprid: a novel neonicotinoid insecticide for foliar application. Brighton Crop Protection Conference,Brighton, UK. Pests and Diseases,Vol. 2A-1,pp. 21–26.

  • Elbert, A., Haas, M., Springer, B., Thielert, W., Nauen, R. (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag. Sci. 64, 1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Ellman, G.L., Courtney, D., Andres, V., Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharm. 7, 88–95

    Article  CAS  PubMed  Google Scholar 

  • Fattouch, S., Raboudi-Fattouch, F., Ponce, J.V.G., Forment, J.V., Lukovic, D., Marzouki, N., Vidal, D.R. (2010) Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase. Food Chem. Toxicol. 48, 957–963

    Article  CAS  PubMed  Google Scholar 

  • Finney, D.J. (1971) ProbitAnalysis, 3rd ed. CambridgeUniversity Press, Cambridge, pp. 318

  • Frasco, M.F., Fournier, D., Carvalho, F., Guilhermino, L. (2005) Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 10, 360–375

    Article  CAS  PubMed  Google Scholar 

  • Hayes, J.D., Flanagan, J.U., Jowsey, I.R. (2005) Glutathione transferases. Ann. Rev. Pharmacol. Toxicol. 45, 51–88

    Article  CAS  Google Scholar 

  • Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J.F. (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350

    Article  CAS  PubMed  Google Scholar 

  • Hinton, B.T., Palladino, M.A., Rudolph, D., Labus, J.C. (1995) The epididymis as protector of maturing spermatozoa. Reprod. Fertil. Dev. 7, 731–745

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z.Y., Knowles, C. (1990) Nicotinic and muscarininc cholinergic receptors in honey bee (Apis mellifera) brain. Comp. Biochem. Physiol. 97, 275–281

    Article  Google Scholar 

  • Hyne, R.V., Maher, W.A. (2003) Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicol. Environ. Saf. 54, 366–374

    Article  CAS  PubMed  Google Scholar 

  • Isayama, S., Saito, S., Kuroda, K., Umeda, K., Kasamatsu, K. (2005) Pyridalyl, a novel insecticide: potency and insecticidal selectivity. Arch. Insect Biochem. Physiol. 58, 226–33

    Article  CAS  PubMed  Google Scholar 

  • Iwasa, T., Motoyama, N., Ambrose, J.T., Michael, R. (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 23, 371–378

    Article  CAS  Google Scholar 

  • Jansen, J.P., Defrance, T., Warnier, A.M. (2011) Side effects of flonicamide and pymetrozine on five aphid natural enemy species. BioControl 56, 759–770

    Article  CAS  Google Scholar 

  • Johnson, R.M., Ellis, M.D., Mullin, C.A., Frazier, M. (2010) Pesticides and honey bee toxicity – USA. Apidologie 41, 312–331

    Article  CAS  Google Scholar 

  • Jones, A.K., Raymond-Delpech, V., Thany, S.H., Gauthier, M., Sattelle, D.B. (2006) The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res. 16, 1422–1430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lagadic, L., Cuany, A., Berge, J.B., Echaubard, M. (1993) Purification and partial characterisation of glutathione S-transferases from insecticide-resistant and lindane-induced susceptible Spodoptera littoralis (Boisd) larvae. Insect Biochem. Mol. Biol. 23, 467–474

    Article  CAS  Google Scholar 

  • Laurino, D., Porporato, M., Patetta, A., Manino, A. (2011) Toxicity of neonicotinoid insecticides to honey bees laboratory tests. Bull. Insectol. 64,107-113

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275

    CAS  PubMed  Google Scholar 

  • Mannervik, B., Lin, P., Guthenberg, C., Jensson, H., Tahir, M.K., Warholm, M., Jornvall, H. (1985) Identification of three classes of cytosolic glutathione transferases common to several mammalian species: correlation between structural data and enzymatic properties. Proc. Nat. Acad. Sci. USA 82, 7202–7206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer, D.F., Lunden, J.D. (1986) Toxicity of fungicides and an acaricide to honey bees (Hymenoptera: Apidae) and their effects on bee foraging behavior and pollen viability on blooming apples and pears. Environ. Entomol. 15, 1047–1049

    Article  CAS  Google Scholar 

  • Mayer, D.F., Kovacs, G., Brett, B.L., Brisabri, B.L. (2001) The effects of spinosad insecticide to adults of Apis mellifera, Megachile rotundata and Nomia melanderi (Hymenoptera:Apidae). Int. J. Horticul. Sci. 7, 93–97

    Google Scholar 

  • Medrzycki, P., Montanari, R., Bortolotti, L., Sabatini, A.G., Maini, S., Porrini, C. (2003) Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull. Insectol. 56, 59–62

    Google Scholar 

  • Mommaerts, V., Reynders, S., Boulet, J., Besard, L., Sterk, G., Smagghe, G. (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behaviour. Ecotoxicology 19, 207–215

    Article  CAS  PubMed  Google Scholar 

  • Murphy, S.D. (1986) Pesticides. In: Klaassen, C.D, Amdur, M., Doull, J. (Editors), The basic science of poisons, Macmillan Publishing Co, New York.

    Google Scholar 

  • Picard-Nizou, A.L., Pham-Delegue, M.H., Kerguelen, V., Marilleau, R., Olsen, L., Grison, R., Toppan, A., Masson, C. (1995) Foraging behavior of honey bees (Apis mellifera L.) on Transgenic Oilseed Rape (Brassica napus L. Var Oleifera). Transgenic Res. 4, 270–276

    Article  CAS  Google Scholar 

  • Porrini, C., Colombo, V., Celli, G. (1996) The honey bee (Apis mellifera L.) as pesticide bioindicator. Evaluation of the degree of pollution by means of environmental hazard indexes. In: Proceedings XX International Congress of Entomology, Firenze, Italy, August 25–31, 444

  • Porrini, C., Ghini, S., Girotti, S., Sabatini, A.G., Gattavecchia, E., Celli, G. (2002) Use of honey bees as bioindicators of environmental pollution in Italy. In: Honey Bees: Estimating the Environmental Impact of Chemicals, (Devillers J, Pham-Délègue MH (eds), Taylor & Francis, London and New York, 186–247

    Google Scholar 

  • Rabea, E.I., Nasr, H.M., Badawy, M.E.I. (2010) Toxic effect and biochemical study of chlorfluazuron, oxymatrine and spinosad on honey bees (Apis mellifera). Arch. Environ. Cont. Toxicol. 58, 722–732

    Article  CAS  Google Scholar 

  • Rhodes, J., Scott, M. (2006) Pesticides: a guide to their effects on honey bees. NSW Department of Primary Industries: Primefacts 149

  • Saint-Denis, M., Labrot, F., Narbonne, J.F., Ribera, D. (1998) Glutathione, glutathione related enzymes and catalase activities in the worm Eisenia fetida. Arch. Environ. Cont. Toxicol. 35, 594–606

    Article  Google Scholar 

  • Schmidt, H.W. (1996) The reaction of bees under the influence of the insecticide Imidacloprid. In: Proceedings of the 6th ICP-BR International Symposium on Hazards of Pesticides, September 17–19, BBA Braunschweig, Germany,(LEWIS GB, Ed.) Appendix n. 12

  • Sechser, B., Reber, B., Bourgeois, F. (2002). Pymetrozine: Selectivity spectrum to beneficial arthropods and fitness for integrated pest management. Anzeiger für Schädlingskunde 75, 72–77

    Article  Google Scholar 

  • Singh, M., Sandhir, R., Kiran, R. (2006) Erythrocyte antioxidant enzymes in toxicological evaluation of commonly used organophosphate pesticides. Ind. Exp. Biol. 44, 580–583

    CAS  Google Scholar 

  • Smirle, M.J., Winston, M.L., Woodward, K.L. (1984) Development of a sensitive bioassay for evaluating sublethal pesticide effects on the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 77, 63–67

    Article  CAS  Google Scholar 

  • Smith R.K., Wilcox M.M. (1990) Chemical residues in bees, honey and beeswax, Am. Bee J. 130, 188–192

    Google Scholar 

  • Stone, J.C., Abramson, C.I., Price, J.M. (1997) Task dependent effects of dicofol (kelthane) on learning in the honey bee (Apis mellifera). Bull. Environ. Contam. Toxicol. 58, 177–183

    Article  CAS  PubMed  Google Scholar 

  • Suchail, S.,Guez, D.,Belzunces, L.P. (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ. Toxicol. Chem. 19, 1901–1905

    Article  CAS  Google Scholar 

  • Suchail, S., De Sousa, G., Rahmani, R., Belzunces, L.P. (2004) In vivo distribution and metabolisation of C-14-imidacloprid in different compartments of Apis mellifera L. Pest Manag. Sci. 60, 1056–1062

    Article  CAS  PubMed  Google Scholar 

  • Thany, S.H. (2010) Neonicotinoid Insecticides. Historical evaluation and resistance mechanisms. Advances. In: Exp. Med. Biol. 683, 75–83

  • Tu, H.T., Silvestre, F., Scippo, M.L., Thome, J.P., Phuong, N.T., Kestemont, P. (2009) Acetylcholinesterase activity as a biomarker of exposure to antibiotics and pesticides in the black tiger shrimp (Penaeus monodon). Ecotoxicol. Environ. Saf. 72, 1463–1470

    Article  CAS  PubMed  Google Scholar 

  • VanEngelsdorp, D., Meixner, M.D. (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80-S95

    Article  PubMed  Google Scholar 

  • Velthuis, H.H.W., Van Doorn, A. (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451

    Article  Google Scholar 

  • Winston, M.L. (1987). The biology of the honey bee. Harvard University Press, Cambridge.

    Google Scholar 

  • Yamamoto, I., Casida, J.E. (1999) Nicotinoid Insecticides and the nicotinic acetylcholine receptor. Springer,Tokyo.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed E. I. Badawy.

Additional information

Manuscript Editor: Monique Gauthier

Toxicité et modifications biochimiques chez les abeilles Apis mellifera exposées à quatre insecticides en conditions de laboratoire

action des insecticides / détoxification / analyse biochimique / enzyme

Toxizität und biochemische Veränderungen bei Honigbienen ( Apis mellifera ) nach Exposition gegenüber 4 Insektiziden unter Laborbedingungen

Insektizide Wirkung / biochemische Analyse / Entgiftung

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badawy, M.E.I., Nasr, H.M. & Rabea, E.I. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46, 177–193 (2015). https://doi.org/10.1007/s13592-014-0315-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-014-0315-0

Keywords

  • Apis mellifera
  • insecticidal action
  • biochemical analysis
  • detoxification