Abstract
The toxicity and biochemical changes in honey bees (Apis mellifera) treated with four insecticides—acetamiprid, dinotefuran, pymetrozine, and pyridalyl—were evaluated under controlled laboratory conditions. Foraging bees were exposed to different dosages of tested insecticides by oral feeding at different dosages recommended by the manufacturers for agricultural crops in Egypt (0.01-, 0.02-, 0.04-, 0.1-, and onefold). Moreover, the acute toxicity of these insecticides was evaluated by topical application on the thorax of foragers to calculate the LD50 values. The specific activities of acetylcholinesterase (AChE), carboxylesterase, glutathione S-transferase (GST), and polyphenol oxidase (PPO) were measured in different tissues of surviving foragers after 24 h of treatment to explore the possible mode of action of insecticides and honey bees' strategies for detoxification and tolerance. The results indicated that regardless of how the bees were exposed to insecticides, dinotefuran was extremely toxic to adult A. mellifera (topical LD50 = 0.0006 μg/bee and oral feeding LC50 = 1.29 mg/L). Pyridalyl showed moderate toxicity compared to dinotefuran at the recommended application rate; however, acetamiprid and pymetrozine were relatively less toxic to bees (<25 % mortality at the recommended application rates). Data showed that tested insecticides varied in their influence on AChE, carboxylesterase, GST, and PPO activities that were highly correlated to their toxicity against A. mellifera. The biochemical analysis of carboxylesterase and GST showed that these enzymes detoxified the low doses of acetamiprid, pymetrozine, and pyridalyl, but not dinotefuran. Overall, our results are valuable not only in evaluating the toxicity of common insecticides onto honey bees, but also in highlighting the validity of enzymes activities as proper indicators for exposure to agrochemicals.
This is a preview of subscription content, access via your institution.




References
Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267
Abramson, C.I., Sokolowski, M.B.C., Brown, E.A., Pilard, S. (2012) The effect of pymetrozine (Plenum WG-50®) on proboscis extension conditioning in honey bees (Apis mellifera: Hybrid var. Buckfast). Ecotoxicol. Environ. Saf. 78, 287–295
Acheampong, S., Stark, J.D. (2004) Can reduced rates of pymetrozine and natural enemies control the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae), on brocooli? Int. J. Pest. Manage., 50, 275–279
Adams, S.M., Shepard, K.K, Greeley, M.S., Jimenez, B.D., Ryan, M.G., Shugart, L.R., McCarthy, J.F., Hinton, D.E. (1989) The use of bioindicators for assessing the effects of pollutant stress on fish. Marine Environ. Res. 28, 459–464
Aliouane, Y., el Hassani, A.K., Gary, V., Armengaud, C., Lambin, M., Gauthier, M. (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. 28, 113–122
Atkins, E.L., Kellum, D., Atkins, K.W. (1981) Reducing pesticides hazard to honey bees: Mortality prediction techniques and integrated management strategies. Division Agric. Sci. University of California, Leaf. 2883, 22 pp. (with: Supplemental list to leaflet 2883 compiled by E. Atkins, Nov. 1990
Badiou-Bénéteau, A., Meled, M., Belzunces, L.P. (2008) Honeybee Apis mellifera acetylcholinesterase - A biomarker to detect deltamethrin exposure. Ecotoxicol. Environ. Saf. 69, 246–253
Badiou-Bénéteau, A., Carvalho, S.M., Brunet, J.L., Carvalho, G.A., Bulete, A., Giroud, B., Belzunces, L.P. (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: Application to the systemic insecticide thiamethoxam. Ecotoxicol. Environ. Saf. 82, 22–31
Belzunces, L., Tchamitchian, S., Brunet, J.L. (2012) Neural effects of insecticides in the honey bee. Apidologie. 43, 348–370
Blacquiere, T., Smagghe, G., Gestel, C.A.M.V., Mommaerts, V. (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992
Brunet, J.L., Badiou, A., Belzunces, L.P. (2005). In vivo metabolic fate of [14C] acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manage. Sci. 61, 742–748
Chanda, S.M., Mortensen, S.R., Moser, V.C., Padilla, S. (1997). Tissue-specificeffectsof chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo comparison. Fundam. Appl. Toxicol. 38, 148–157
Costa, E.M., Araujo, E.L., Maia, A.V.P., Silva, F.E.L., Bezerra, C.E.S.; Silva, G.J. (2014) Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie 45, 34–44
Cresswell, J.E., Desneux, N., Vanengelsdorp, D. (2012) Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill’s epidemiological criteria. Pest Manag. Sci. 68, 819–827
Currie, R.W. (1999) Fluvalinate queen tabs for use against Varroa jacobsoni: Efficacy and impact on honey bee, Apis mellifera, queen and colony performance. Am. Bee J. 139, 871–876
Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delègue, M.H. (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybee under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57, 410–419
Decourtye, A., Devillers, J., Genecque, E., Le Menach, K., Budzinski, H., Cluzeau, S., Pham-Delègue, M.H. (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol. 48, 242–250
Desneux, N., Decourtye, A., Delpuech, J.M. (2007) The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52, 81–106
Elbert, C., Erdelen, C., Kuehnhold, J., Nauen, R., Schmidt, H.W., Hattori, Y. (2000). Thiacloprid: a novel neonicotinoid insecticide for foliar application. Brighton Crop Protection Conference,Brighton, UK. Pests and Diseases,Vol. 2A-1,pp. 21–26.
Elbert, A., Haas, M., Springer, B., Thielert, W., Nauen, R. (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag. Sci. 64, 1099–1105
Ellman, G.L., Courtney, D., Andres, V., Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharm. 7, 88–95
Fattouch, S., Raboudi-Fattouch, F., Ponce, J.V.G., Forment, J.V., Lukovic, D., Marzouki, N., Vidal, D.R. (2010) Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase. Food Chem. Toxicol. 48, 957–963
Finney, D.J. (1971) ProbitAnalysis, 3rd ed. CambridgeUniversity Press, Cambridge, pp. 318
Frasco, M.F., Fournier, D., Carvalho, F., Guilhermino, L. (2005) Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 10, 360–375
Hayes, J.D., Flanagan, J.U., Jowsey, I.R. (2005) Glutathione transferases. Ann. Rev. Pharmacol. Toxicol. 45, 51–88
Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J.F. (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350
Hinton, B.T., Palladino, M.A., Rudolph, D., Labus, J.C. (1995) The epididymis as protector of maturing spermatozoa. Reprod. Fertil. Dev. 7, 731–745
Huang, Z.Y., Knowles, C. (1990) Nicotinic and muscarininc cholinergic receptors in honey bee (Apis mellifera) brain. Comp. Biochem. Physiol. 97, 275–281
Hyne, R.V., Maher, W.A. (2003) Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicol. Environ. Saf. 54, 366–374
Isayama, S., Saito, S., Kuroda, K., Umeda, K., Kasamatsu, K. (2005) Pyridalyl, a novel insecticide: potency and insecticidal selectivity. Arch. Insect Biochem. Physiol. 58, 226–33
Iwasa, T., Motoyama, N., Ambrose, J.T., Michael, R. (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 23, 371–378
Jansen, J.P., Defrance, T., Warnier, A.M. (2011) Side effects of flonicamide and pymetrozine on five aphid natural enemy species. BioControl 56, 759–770
Johnson, R.M., Ellis, M.D., Mullin, C.A., Frazier, M. (2010) Pesticides and honey bee toxicity – USA. Apidologie 41, 312–331
Jones, A.K., Raymond-Delpech, V., Thany, S.H., Gauthier, M., Sattelle, D.B. (2006) The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res. 16, 1422–1430
Lagadic, L., Cuany, A., Berge, J.B., Echaubard, M. (1993) Purification and partial characterisation of glutathione S-transferases from insecticide-resistant and lindane-induced susceptible Spodoptera littoralis (Boisd) larvae. Insect Biochem. Mol. Biol. 23, 467–474
Laurino, D., Porporato, M., Patetta, A., Manino, A. (2011) Toxicity of neonicotinoid insecticides to honey bees laboratory tests. Bull. Insectol. 64,107-113
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275
Mannervik, B., Lin, P., Guthenberg, C., Jensson, H., Tahir, M.K., Warholm, M., Jornvall, H. (1985) Identification of three classes of cytosolic glutathione transferases common to several mammalian species: correlation between structural data and enzymatic properties. Proc. Nat. Acad. Sci. USA 82, 7202–7206
Mayer, D.F., Lunden, J.D. (1986) Toxicity of fungicides and an acaricide to honey bees (Hymenoptera: Apidae) and their effects on bee foraging behavior and pollen viability on blooming apples and pears. Environ. Entomol. 15, 1047–1049
Mayer, D.F., Kovacs, G., Brett, B.L., Brisabri, B.L. (2001) The effects of spinosad insecticide to adults of Apis mellifera, Megachile rotundata and Nomia melanderi (Hymenoptera:Apidae). Int. J. Horticul. Sci. 7, 93–97
Medrzycki, P., Montanari, R., Bortolotti, L., Sabatini, A.G., Maini, S., Porrini, C. (2003) Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull. Insectol. 56, 59–62
Mommaerts, V., Reynders, S., Boulet, J., Besard, L., Sterk, G., Smagghe, G. (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behaviour. Ecotoxicology 19, 207–215
Murphy, S.D. (1986) Pesticides. In: Klaassen, C.D, Amdur, M., Doull, J. (Editors), The basic science of poisons, Macmillan Publishing Co, New York.
Picard-Nizou, A.L., Pham-Delegue, M.H., Kerguelen, V., Marilleau, R., Olsen, L., Grison, R., Toppan, A., Masson, C. (1995) Foraging behavior of honey bees (Apis mellifera L.) on Transgenic Oilseed Rape (Brassica napus L. Var Oleifera). Transgenic Res. 4, 270–276
Porrini, C., Colombo, V., Celli, G. (1996) The honey bee (Apis mellifera L.) as pesticide bioindicator. Evaluation of the degree of pollution by means of environmental hazard indexes. In: Proceedings XX International Congress of Entomology, Firenze, Italy, August 25–31, 444
Porrini, C., Ghini, S., Girotti, S., Sabatini, A.G., Gattavecchia, E., Celli, G. (2002) Use of honey bees as bioindicators of environmental pollution in Italy. In: Honey Bees: Estimating the Environmental Impact of Chemicals, (Devillers J, Pham-Délègue MH (eds), Taylor & Francis, London and New York, 186–247
Rabea, E.I., Nasr, H.M., Badawy, M.E.I. (2010) Toxic effect and biochemical study of chlorfluazuron, oxymatrine and spinosad on honey bees (Apis mellifera). Arch. Environ. Cont. Toxicol. 58, 722–732
Rhodes, J., Scott, M. (2006) Pesticides: a guide to their effects on honey bees. NSW Department of Primary Industries: Primefacts 149
Saint-Denis, M., Labrot, F., Narbonne, J.F., Ribera, D. (1998) Glutathione, glutathione related enzymes and catalase activities in the worm Eisenia fetida. Arch. Environ. Cont. Toxicol. 35, 594–606
Schmidt, H.W. (1996) The reaction of bees under the influence of the insecticide Imidacloprid. In: Proceedings of the 6th ICP-BR International Symposium on Hazards of Pesticides, September 17–19, BBA Braunschweig, Germany,(LEWIS GB, Ed.) Appendix n. 12
Sechser, B., Reber, B., Bourgeois, F. (2002). Pymetrozine: Selectivity spectrum to beneficial arthropods and fitness for integrated pest management. Anzeiger für Schädlingskunde 75, 72–77
Singh, M., Sandhir, R., Kiran, R. (2006) Erythrocyte antioxidant enzymes in toxicological evaluation of commonly used organophosphate pesticides. Ind. Exp. Biol. 44, 580–583
Smirle, M.J., Winston, M.L., Woodward, K.L. (1984) Development of a sensitive bioassay for evaluating sublethal pesticide effects on the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 77, 63–67
Smith R.K., Wilcox M.M. (1990) Chemical residues in bees, honey and beeswax, Am. Bee J. 130, 188–192
Stone, J.C., Abramson, C.I., Price, J.M. (1997) Task dependent effects of dicofol (kelthane) on learning in the honey bee (Apis mellifera). Bull. Environ. Contam. Toxicol. 58, 177–183
Suchail, S.,Guez, D.,Belzunces, L.P. (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ. Toxicol. Chem. 19, 1901–1905
Suchail, S., De Sousa, G., Rahmani, R., Belzunces, L.P. (2004) In vivo distribution and metabolisation of C-14-imidacloprid in different compartments of Apis mellifera L. Pest Manag. Sci. 60, 1056–1062
Thany, S.H. (2010) Neonicotinoid Insecticides. Historical evaluation and resistance mechanisms. Advances. In: Exp. Med. Biol. 683, 75–83
Tu, H.T., Silvestre, F., Scippo, M.L., Thome, J.P., Phuong, N.T., Kestemont, P. (2009) Acetylcholinesterase activity as a biomarker of exposure to antibiotics and pesticides in the black tiger shrimp (Penaeus monodon). Ecotoxicol. Environ. Saf. 72, 1463–1470
VanEngelsdorp, D., Meixner, M.D. (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80-S95
Velthuis, H.H.W., Van Doorn, A. (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451
Winston, M.L. (1987). The biology of the honey bee. Harvard University Press, Cambridge.
Yamamoto, I., Casida, J.E. (1999) Nicotinoid Insecticides and the nicotinic acetylcholine receptor. Springer,Tokyo.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript Editor: Monique Gauthier
Toxicité et modifications biochimiques chez les abeilles Apis mellifera exposées à quatre insecticides en conditions de laboratoire
action des insecticides / détoxification / analyse biochimique / enzyme
Toxizität und biochemische Veränderungen bei Honigbienen ( Apis mellifera ) nach Exposition gegenüber 4 Insektiziden unter Laborbedingungen
Insektizide Wirkung / biochemische Analyse / Entgiftung
Rights and permissions
About this article
Cite this article
Badawy, M.E.I., Nasr, H.M. & Rabea, E.I. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46, 177–193 (2015). https://doi.org/10.1007/s13592-014-0315-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13592-014-0315-0
Keywords
- Apis mellifera
- insecticidal action
- biochemical analysis
- detoxification