Advertisement

Apidologie

, Volume 46, Issue 2, pp 167–176 | Cite as

Expression and characterization of honeybee, Apis mellifera, larva chymotrypsin-like protease

  • Takuma Matsuoka
  • Akihiko Takasaki
  • Tomoyuki Mishima
  • Takuji Kawashima
  • Yoshihiro Kanamaru
  • Tadasi Nakamura
  • Tomio Yabe
Original article

Abstract

Previously, we found three enzyme fractions containing activities for the hydrolysis of royal jelly proteins from honeybee queen larvae. In this study, we identified a honeybee chymotrypsin-like protease (HCLPase) by LC-MS/MS and expressed it as a recombinant protein in Escherichia coli. The protease had an estimated molecular weight of around 26 kDa and showed high specificity for succinyl-Ala-Ala-Pro-Phe p-nitroanilide as a proteolytic substrate. Furthermore, the protease had an optimal pH of 9, and the activity was markedly inhibited by phenylmethylsulfonyl fluoride but not tosyl phenylalanyl chloromethyl ketone, both of which are irreversible inhibitors of chymotrypsin-like serine proteases. These results suggested that this recombinant protease, HCLPase, was a chymotrypsin-like serine protease with different characteristics from mammalian chymotrypsin.

Keywords

Apis mellifera queen larva chymotrypsin-like protease 

Notes

Acknowledgments

We wish to thank Dr. Yokichi Hayashi of the Department of Life Science, Asahikawa Medical Collage, for helpful suggestions. We also thank Kenji Ota, Suzuyo Watanabe, Yuri Kashima, and Satoshi Kanematsu of Akitaya Honten Co., Ltd. for their help in the procurement and preparation of larval samples.

References

  1. Botos, I., Meyer, E., Nguyen, M., Swanson, S.M., Koomen, J.M., Russell, D.H., Meyer, E.F. (2000) The structure of an insect chymotrypsin. J. Mol. Biol. 298, 895–901CrossRefPubMedGoogle Scholar
  2. Brødsgaard, H.F., Brødsgaard, C.J., Hansen, H., Lövei, G.L. (2003) Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae. Apidologie 34, 139–145CrossRefGoogle Scholar
  3. Burgess, E.P.J., Malone, L.A., Christeller, J.T. (1996) Effect of two proteinase inhibitors on the digestive enzymes and survival of honey bees (Apis mellifera). J. Insect Physiol. 42, 823–828CrossRefGoogle Scholar
  4. Dahlmann, B., Jany, K.D., Pfleiderer, G. (1978) The midgut endopeptidase of the honey bee (Apis mellifica): comparison of the enzymes in different ontogenetic stages. Insect Biochem. 8, 203–211CrossRefGoogle Scholar
  5. Elpidina, E.N., Tsybina, T.A., Dunaevsky, Y.E., Belozersky, M.A., Zhuzhikov, D.P., Oppert, B. (2005) A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae. Biochimie 87, 771–779CrossRefPubMedGoogle Scholar
  6. Giebel, W., Zwilling, R., Pfleiderer, G. (1971) The evolution of endopeptidases-XII. The proteolytic enzymes of the honeybee (Apis mellifica L.). Comp. Biochem. Physiol. 38B, 197–210Google Scholar
  7. Guo, H., Ekusa, A., Iwai, K., Yonekura, M., Takahata, Y., Morimatsu, F. (2008) Royal jelly peptides inhibit lipid peroxidation in vitro and in vivo. J. Nutr. Sci. Vitaminol. 54, 191–195CrossRefPubMedGoogle Scholar
  8. Guo, H., Kouzuma, Y., Yonekura, M. (2009) Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 113, 238–245CrossRefGoogle Scholar
  9. Herbert Jr., E.W., Shimanuki, H. (1983) Effect of diet pH on the consumption, brood rearing, and pH of worker jelly produced by caged honey bees. Apidologie 14, 191–196CrossRefGoogle Scholar
  10. Herrero, S., Combes, E., Van Oers, M.M., Vlak, J.M., de Maagd, R.A., Beekwilder, J. (2005) Identification and recombinant expression of a novel chymotrypsin from Spodoptera exigua. Insect Biochem. Mol. Biol. 35, 1073–1082CrossRefPubMedGoogle Scholar
  11. Hidaka, S., Okamoto, Y., Uchiyama, S., Nakatsuoma, A., Hashimoto, K., Ohnishi, S.T., Yamaguchi, M. (2006) Royal jelly prevents osteoporosis in rats: beneficial effects in ovariectomy model and in bone tissue culture model. eCAM 3, 339–348PubMedCentralPubMedGoogle Scholar
  12. Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949CrossRefGoogle Scholar
  13. Jimenez, D.R., Gilliam, M. (1989) Age-related changes in midgut ultrastructure and trypsin activity in the honey bee, Apis mellifera. Apidologie 20, 287–303CrossRefGoogle Scholar
  14. Jones, J.C., Myerscough, M.R., Graham, S., Oldroyd, B.P. (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305, 402–404CrossRefPubMedGoogle Scholar
  15. Kamakura, M. (2011) Royalactin induces queen differentiation in honeybees. Nature 473, 478–483CrossRefPubMedGoogle Scholar
  16. Louati, H., Zouari, N., Miled, N., Gargouri, Y. (2011) A new chymotrypsin-like serine protease involved in dietary protein digestion in a primitive animal, Scorpio maurus: purification and biochemical characterization. Lipids Health Dis. 10, 121CrossRefPubMedCentralPubMedGoogle Scholar
  17. Matsui, T., Yukiyoshi, A., Doi, S., Sugimoto, H., Yamada, H., Matsumoto, K. (2002) Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. J. Nutr. Biochem. 13, 80–86CrossRefPubMedGoogle Scholar
  18. Matsuoka, T., Kawashima, T., Nakamura, T., Kanamaru, Y., Yabe, T. (2012) Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera. Apidologie 43, 685–697CrossRefGoogle Scholar
  19. Moore, S. (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 243, 6281–6283PubMedGoogle Scholar
  20. Moritz, B., Crailsheim, K. (1987) Physiology of protein digestion in the midgut of honeybee (Apis mellifera L.). J. Insect Physiol. 12, 923–931CrossRefGoogle Scholar
  21. Nagai, T., Inoue, R., Suzuki, N., Nagashima, T. (2006) Antioxidant properties of enzymatic hydrolysates from royal jelly. J. Med. Food 9, 363–367CrossRefPubMedGoogle Scholar
  22. Nakasa, T., Ueda, S., Nakatsuka, M., Okinaka, O. (2003) Effect of protease-treated royal jelly on plasma and liver lipids in rats fed on a high fat plus high cholesterol diet. Nippon Shokuhin Kagaku Kogaku Kaishi 10, 463–467CrossRefGoogle Scholar
  23. Niu, K., Guo, H., Guo, Y., Ebihara, S., Asada, M., Ohrui, T., Furukawa, K., Ichinose, M., Yanai, K., Kubo, Y., Arai, H., Okazaki, T., Nagatomi, R. (2013) Royal jelly prevents the progression of sarcopenia in aged mice in vivo and in vitro. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1482–1492CrossRefPubMedGoogle Scholar
  24. Shevchenko, A., Wilm, M., Vorm, O., Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858CrossRefPubMedGoogle Scholar
  25. Terra, W.R., Ferreira, C. (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol. 109B, 1–62Google Scholar
  26. Tokunaga, K., Yoshida, C., Suzuki, K., Maruyama, H., Futamura, Y., Araki, Y., Mishima, S. (2004) Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biol. Pharm. Bull. 27, 189–192CrossRefPubMedGoogle Scholar
  27. Tsybina, T.A., Dunaevsky, Y.E., Belozersky, M.A., Zhuzhikov, D.P., Oppert, B., Elpidina, E.N. (2005) Digestive proteinases of yellow mealworm (Tenebrio molitor) larvae: purification and characterization of a trypsin-like proteinase. Biochemistry (Moscow) 70, 370–377CrossRefGoogle Scholar
  28. Vinokurov, K.D., Elpidina, E.N., Oppert, B., Prabhakar, S., Zhuzhikov, D.P., Dunaevsky, Y.E., Belozersky, M.A. (2006) Diversity of digestive proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Comp. Biochem. Physiol. B 145, 126–137CrossRefPubMedGoogle Scholar
  29. Wagner, W., Möhrlen, F., Schnetter, W. (2002) Characterization of the proteolytic enzymes in the midgut of the European cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). Insect Biochem. Mol. Biol. 32, 803–814CrossRefPubMedGoogle Scholar
  30. Whitworth, S.T., Blum, M.S., Travis, J. (1998) Proteolytic enzymes from larvae of the fire ant, Solenopsis invicta: isolation and characterization of four serine endopeptidases. J. Biol. Chem. 273, 14430–14434CrossRefPubMedGoogle Scholar
  31. Zou, Z., Lopez, D.L., Kanost, M.R., Evans, J.D., Jiang, H. (2006) Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryotic development and innate immunity. Insect Biochem. Mol. Biol. 15, 603–614CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2014

Authors and Affiliations

  • Takuma Matsuoka
    • 1
  • Akihiko Takasaki
    • 2
  • Tomoyuki Mishima
    • 2
  • Takuji Kawashima
    • 1
  • Yoshihiro Kanamaru
    • 3
  • Tadasi Nakamura
    • 1
  • Tomio Yabe
    • 3
  1. 1.Akitayahonten Co., Ltd.GifuJapan
  2. 2.Department of Medical TechnologyGifu University of Medical ScienceSekiJapan
  3. 3.Department of Applied Life ScienceGifu UniversityGifuJapan

Personalised recommendations