Skip to main content

Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states

Abstract

Pesticides have been cited as one of the major drivers of pollinator loss. However, little is known about pesticide impacts on natural populations of native honey bee species. This study looked into the effect of pesticides with respect to oxidative stress in the laboratory and in field populations of two native Indian honey bee species (Apis dorsata and A. cerana) by examining a combination of biomarkers, e.g., superoxide dismutase, catalase and xanthine oxidase. A significant upregulation of all three biomarkers was observed in both treated individuals in laboratory experiments and field populations sampled from a pesticide use gradient. This study reports, for the first time, an increase in expression of xanthine oxidase in an invertebrate system (honey bees) exposed to pesticides.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

REFERENCES

  1. Abrol, D.P. (2011) Foraging. In: Hepburn, H.R., Radloff, S.E. (eds.) Honeybees of Asia, pp. 257–292. Springer, New York

    Chapter  Google Scholar 

  2. Aebi, H. (1984) Catalase, in : Packer, L. (Ed.), Methods in Enzymology. Academic Press, Orlando, pp. 121–126. Agricultural census, Government of India (http://agcensus.nic.in/).

  3. Ahmad, S., Duval, D.L., Weinhold, L.C., Pardini, R.S. (1991) Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochem. 21(5), 563–572

    CAS  Article  Google Scholar 

  4. Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., Sabzevari, O. (2003) Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 22, 205–211

    CAS  PubMed  Article  Google Scholar 

  5. Anderson, A.D., Patton, R.L. (1955) In vitro studies of uric acid synthesis in insects. J. Exp. Zool. 128(3), 443–451

    Article  Google Scholar 

  6. Aranda, R., Doménech, E., Rus, A.D., Real, J.T., Sastre, J., Viña, J., Pallardó, F.V. (2007) Age-related increase in xanthine oxidase activity in human plasma and rat tissues. Free Radic. Res. 41(11), 1195–1200

    CAS  PubMed  Article  Google Scholar 

  7. Barbeta, C., Lino-Neto, T., Piques, M.C., Sousa, M.F., Tavares, R.M., Pais, M.S. (2004) Identification of Zantedeschia aethiopica Cat1 and Cat2 catalase genes and their expression analysis during spathe senescence and regreening. Plant Sci. 167, 889–898

    Article  Google Scholar 

  8. Archer, C.R., Pirk, C.W.W., Wright, G.A., Nicolson, S.W. (2014) Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol. . doi:10.1111/1365-2435.12226

    Google Scholar 

  9. Bouayed, J., Bohn, T. (2010) Exogenous antioxidants—double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative. Med. Cell Longev. 3, 228–237

    Article  Google Scholar 

  10. Badiou-Bénéteau, A., Carvalho, S.M., Brunet, J.-L., Carvalho, G.A., Buleté, A., Giroud, B., Belzunces, L.P. (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Ecotoxicol. Environ. Saf. 82, 22–31

    PubMed  Article  Google Scholar 

  11. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254

    CAS  PubMed  Article  Google Scholar 

  12. Brittain, C.A., Vighi, M., Bommarco, R., Settele, J., Potts, S.G. (2010) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 11, 106–115

    CAS  Article  Google Scholar 

  13. Choudhary, A., Sharma, D.C., Badiyala, A. (2009) Relative safety of some pesticides against honey bees, Apis cerana cerana Fab. and Apis mellifera L. on mustard (Brassica Juncea L. Czern). Pestic. Res. J. 21(1), 67–70

    CAS  Google Scholar 

  14. Claudianos, C., Ranson, H., Johnson, R.M., Biswas, S., Schuler, M.A., Berenbaum, M.R., Eyereisen, R., Oakeshott, J.G. (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15(5), 615–636

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Conners, D.E. (2004) Biomarkers of oxidative stress in freshwater clams (Corbicula fluminea), as mechanistic tools to evaluate the impairment of stream ecosystem health by lawn care pesticides. Ph. D. Thesis, Graduate Faculty, University of Georgia, Georgia.

  16. Cresswell, J.E., Laycock, I. (2012) Towards the comparative ecotoxicology of bees: the response-response relationship. Julius-Kuhn-Archiv 437

  17. Czarniewska, E., Kasprzyk, A., Ziemnicki, K. (2003) Effect of paraquat and metoxychlor on antioxidant enzymes in frog Rana esculenta L liver. Biol. Lett. 40(2), 125–133

    CAS  Google Scholar 

  18. Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S. (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol. 48, 242–250

    CAS  PubMed  Article  Google Scholar 

  19. Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S. (2004) Imidacloprid impairs memory and brain metabolism in the honeybee (Apismellifera L.). Pestic. Biochem. Phys. 78, 83–92

    CAS  Article  Google Scholar 

  20. Desneux, N., Decourtye, A., Delpuech, J.M. (2007) The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106

    CAS  PubMed  Article  Google Scholar 

  21. Devillers, J., Pham-Delegue, M.H., Decourtye, A., Budzinski, H., Cluzeau, S., Maurin, G. (2002) Structure-toxicity modeling of pesticides to honey bees. Environ. Res. 13(7–8), 641–648

    CAS  Google Scholar 

  22. Dhaliwai, H.S., Sharma, P.L. (1974) Foraging range of the Indian honeybee. J. Apic. Res. 13, 137–141

    Google Scholar 

  23. Dyer, F.C., Seeley, T.D. (1991) Dance dialects and foraging range in three Asian honey bee species. Behav. Ecol. Sociobiol. 28, 227–233

    Article  Google Scholar 

  24. Felton, G.W., Summers, C.B. (1995) Antioxidant systems in insects. Arch. Insect Bioch. Physiol. 29(2), 187–197

    CAS  Article  Google Scholar 

  25. Fridovich, I. (1982) Superoxide dismutase in biology and medicine. In: Autor, A.P. (ed.) Pathology of Oxygen, pp. 1–19. Academic, New York

    Google Scholar 

  26. Fujiyuki, T., Matsuzaka, E., Nakaoka, T., Takeuchi, H., Wakamoto, A., Ohka, S., Sekimizu, K., Nomoto, A., Kubo, T. (2009) Distribution of Kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. J. Virol. 83(22), 11560

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. George, P.J.E., Ambrose, D.P. (2004) Toxic effects of insecticides in the histomorphology of alimentary canal, testis and ovary in a reduviid Rhynocoris kumarii Ambrose and Livingstone (Hemiptera: Reduviidae). J. Adv. Zool. 25, 46–50

    Google Scholar 

  28. Gilbert, M.D., Wilkinson, C.F. (1974) Microsomal oxidases in honey bee, Apis mellifera (L.). Pestic. Biochem. Physiol. 4(1), 56–66

    CAS  Article  Google Scholar 

  29. Halliwell, B. (2007) Biochemistry of oxidative stress. Biochem. Soc. Trans. 35(Pt 5), 1147–1150

    CAS  PubMed  Google Scholar 

  30. Han, P., Niu, C.-Y., Lei, C.-L., Cui, J.-J., Desneux, N. (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19(8), 1612–1619

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Hardstone, M.C., Scott, J.G. (2010) Is Apis mellifera more sensitive to insecticides than other insects. Pest Manag. Sci. 66(11), 1171–1180

    CAS  PubMed  Article  Google Scholar 

  32. Harrison, R. (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med. 33(6), 774–797

    CAS  PubMed  Article  Google Scholar 

  33. Hayashi, Y. (1961) Properties of xanthine dehydrogenase in the silkworm, Bombyx mori L. Nature 192, 756–757

    CAS  PubMed  Article  Google Scholar 

  34. Henry, N., Béguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A. (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350

    CAS  PubMed  Article  Google Scholar 

  35. Hille, R., Nishino, T. (1995) Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 9(11), 995–1003

    CAS  PubMed  Google Scholar 

  36. Idris, A.B., Grafius, E. (1993) Pesticides affect immature stages of Diadegma insulare (Hymenoptera, Ichneumonidae) and its host, the diamondback moth (Lepidoptera, Plutellidae). J. Econ. Entomol. 86, 1203–1212

    CAS  Google Scholar 

  37. Irzykiewicz, H. (1955) Xanthine oxidase of the clothes moth, Tineola bisselliella, and some other insects. Aust. J. Biol. Sci. 8, 369–377

    CAS  Google Scholar 

  38. Joanisse, D.R., Storey, K.B. (1996) Oxidative stress and antioxidants in overwintering larvae of cold-hardy goldenrod gall insects. J. Exp. Biol. 199(Pt 7), 1483–1491

    CAS  PubMed  Google Scholar 

  39. Johnson, R.M., Ellis, M.D., Mullin, C., Frazier, M. (2010) Pesticides and honey bee toxicity – USA. Apidologie 41(3), 312–331

    CAS  Article  Google Scholar 

  40. Khessiba, A., Roméo, M., Aïssa, P. (2005) Effects of some environmental parameters on catalase activity measured in the mussel (Mytilus galloprovincialis) exposed to lindane. Environ. Pollut. 133(2), 275–281

    CAS  PubMed  Article  Google Scholar 

  41. Klein, J.P., Moeschberger, M.L. (2003) Survival Analysis. Techniques for Censored and Truncated Data, 2nd edn. Springer Publishers, New York

    Google Scholar 

  42. Koeniger, N., Vorwohl, G. (1979) Competition for food among four sympatric species of Apini in Sri Lanka (A. dorsata, A. cerana, A. florea and Trigona iridipennis). J. Apic. Res. 18, 95–109

    Google Scholar 

  43. Koetz, A.H. (2013) Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 4, 558–592

    Article  Google Scholar 

  44. Krupke, C.H., Hunt, G.J., Eitzer, B.D., Andino, G., Given, K. (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7(1), e29268

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Landa, V., Sula, J., Marec, F., Matha, V., Soldan, T. (1991) Methods for Assessing Exposure of insects. In: Tardiffand, R.G., Goldstei, B. (eds.) Human and Non-Human Biota, pp. 249–266. John Wiley and Sons Ltd., New York

    Google Scholar 

  46. Mamidala, P., Jones, S.C., Mittapalli, O. (2011) Metabolic resistance in bed bugs. Insects 2(1), 36–48

    Article  Google Scholar 

  47. Marklund, S., Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47(3), 469–474

    CAS  PubMed  Article  Google Scholar 

  48. McCord, J.M., Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (heinocuprein). J. Biol. Chem. 244(22), 6049–6055

    CAS  PubMed  Google Scholar 

  49. Medina, P., Budia, F., Del Estal, P., Vinuela, E. (2004) Influence of azadirachtin, a botanical insecticide, on Chrysoperla carnea (Stephens) reproduction: toxicity and ultrastructural approach. J. Econ. Entomol. 97, 43–50

    CAS  PubMed  Article  Google Scholar 

  50. Meneshian, A., Bulkley, G.B. (2002) The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 9(3), 161–175

    CAS  PubMed  Article  Google Scholar 

  51. Mueller, S., Riedel, H.-D., Stremmel, W. (1997) Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood 90(12), 4973–4978

    CAS  PubMed  Google Scholar 

  52. Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., vanEngelsdorp, D., Pettis, J.S. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5(3), e9754

    PubMed Central  PubMed  Article  Google Scholar 

  53. Nishida, Y. (2011) The chemical process of oxidative stress by copper (II) and iron (III) ions in several neurodegenerative disorders. Monatsh. Chem. 142, 375–384

    CAS  Article  Google Scholar 

  54. Nishino, T., Okamoto, K., Kawaguchi, Y., Hori, H., Matsumura, T., Eger, B.T., Pai, E.F., Nishino, T. (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J. Biol. Chem. 280(26), 24888–24894

    CAS  PubMed  Article  Google Scholar 

  55. Osborne, J.L. (2012) Bumble bees and pesticides. Nature 491(7422), 43–45

    CAS  PubMed  Article  Google Scholar 

  56. Palmer, M.J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G.A., Connolly, C.N. (2013) Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat. Commun. 4, 1634

    PubMed Central  PubMed  Article  Google Scholar 

  57. Partap, U. (2011) The Pollination Role of Honeybees. In: Hepburn, H.R., Radloff, S.E. (eds.) Honeybees of Asia, pp. 227–255. Springer-Verlag Berlin, Heidelberg

    Chapter  Google Scholar 

  58. Qiao, D., Seidler, F.J., Slotkin, T.A. (2005) Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol. Appl. Pharm. 206(1), 17–26

    CAS  Article  Google Scholar 

  59. Ranjbar, A., Solhi, H., Mashayekhi, F.J., Susanabdi, A., Rezaie, A., Abdollahi, M. (2005) Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ. Toxicol. Pharmacol. 20(1), 88–91

    CAS  PubMed  Article  Google Scholar 

  60. Schreinemachers, P., Tipraqsa, P. (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37(6), 616–626

    Article  Google Scholar 

  61. Schriever, C.A., Callaghan, A., Biggs, J.P., Liess, M. (2008) Freshwater Biological Indicator of Pesticide Contamination. Environment Agency, Rio House

    Google Scholar 

  62. Smirle, M.J., Winston, M.L. (1988) Detoxifying enzyme activity in worker honeybees: an adaptation for foraging in contaminated ecosystems. Can. J. Zool. 66(9), 1938–1942

    CAS  Article  Google Scholar 

  63. Smirle, M.J. (1988) Insecticide resistance mechanism in the honey bee, Apis mellifera L. Ph.D. Thesis, Graduate Faculty, Simon Fraser University, Vancouver.

  64. Stanley, J., Chandrasekaran, S., Preetha, G., Kuttalam, S. (2010) Toxicity of diafenthiuron to honey bees in laboratory, semi-field and field conditions. Pest Manag. Sci. 66(5), 505–510

    CAS  PubMed  Article  Google Scholar 

  65. Starr, C.K., Schmidt, P.J., Schmidt, J.O. (1987) Nest-site preference of the giant honey bee, Apis dorsata (Hymenoptera : Apidae), in Borneo. Pan-Pac. Entomol. 63(1), 37–42

    Google Scholar 

  66. Stefanidou, M., Athanaselis, S., Koutselinis, A. (2003) The toxicology of honey bee poisoning. Vet. Hum. Toxicol. 45(5), 261–265

    CAS  PubMed  Google Scholar 

  67. Visser, A., Blacquière, T. (2010) Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid. Proc Neth. Entomol. Soc. Meet. 21

  68. Velki, M., Kodrík, D., Večeřa, J., Hackenberger, B.K., Socha, R. (2011) Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol. 172(1), 77–84

    CAS  PubMed  Article  Google Scholar 

  69. Villa, S., Vighi, M., Finizio, A., Serini, G.B. (2000) Risk assessment for honeybees from pesticide-exposed pollen. Ecotoxicology 9, 287–297

    CAS  Article  Google Scholar 

  70. Vorbach, C., Harrison, R., Capecchi, M.R. (2003) Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol. 24(9), 512–517

    CAS  PubMed  Article  Google Scholar 

  71. Wajner, M., Harkness, R.A. (1989) Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochim. Biophys. Acta 991(1), 79–84

    CAS  PubMed  Article  Google Scholar 

  72. Welinder, C., Ekblad, L. (2011) Coomassie staining as loading control in western blot analysis. J. Proteome Res. 10(3), 1416–1419

    CAS  PubMed  Article  Google Scholar 

  73. Whitehorn, P.R., O’Connor, S., Wackers, F.L., Goulson, D. (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336(6079), 351–352

    CAS  PubMed  Article  Google Scholar 

  74. Winfree, R., Aguilar, R., Vázquez, D.P., LeBuhn, G., Aizen, M.A. (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90(8), 2068–2076

    PubMed  Article  Google Scholar 

  75. Yu, S.J., Robinson, F.A., Nation, J.L. (1984) Detoxification capacity in the honey bee, Apis mellifera L. Pestic. Biochem. Physiol. 22, 360–368

    CAS  Article  Google Scholar 

  76. Zhang, J.-W., Lv, G.-C., Zhao, Y. (2010) The significance of the measurement of serum xanthine oxidase and oxidation markers in patients with acute organophosphorus pesticide poisoning. J. Int. Med. Res. 38(2), 458–465

    CAS  PubMed  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by an INSPIRE fellowship from the Department of Science & Technology, Govt. of India to Priyadarshini Chakrabarti; the Department for Environment, Food and Rural Affairs (DEFRA) Darwin Initiative grant (1662) to Parthiba Basu and Barbara Smith, and a research grant to Sagartirtha Sarkar from the Department of Science & Technology, Govt. of India. Soumik Chatterjee, Debaditya Kumar, Ritam Bhattacharya and Arnob Chatterjee helped in obtaining bee samples. Dr. Kaberi Samanta helped with the GIS maps. The Department of Agriculture, Governments of Odisha and West Bengal helped by providing the cropping intensity data. SGS India Private Limited analysed pesticide residues in soil and honey bee bodies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parthiba Basu.

Additional information

Stress oxydatif provoqué par des pesticides sur des populations indigènes d’abeilles, élevées en laboratoire et en champ, dans des zones d’agriculture intensive de deux Etats de l’est de l’Inde

Apis cerana / Apis dorsata / enzyme / dismutase / catalase / oxydase / insecticide

Durch Pestizide verursachter oxydativer Stress bei Labor. und Feldpopulationen einheimischer Honigbeienen entlang zweier intensiver Agrarlandschaften in zwei ostindischen Staaten

Apis cerana / Apis dorsata / Enzyme / Superoxid-Dismutase / Xanthin-Oxidase / Katalase / Insektizid

Manuscript editor: Monique Gauthier

Electronic supplementary material

APPENDIX

APPENDIX

List of abbreviations used in methodology section:

Abbreviation Full terminology Abbreviation Full terminology
HIC High intensity cropping XOX Xanthine oxidase
LIC Low intensity cropping PBS Phosphate buffered saline
LCMS/MS Liquid chromatography–mass spectrometry / mass spectrometry NaCl Sodium chloride
GC Gas chromatography NP40 Tergitol-type NP-40 (nonylphenoxypolyethoxylethanol)
EPA3540C and EPA8081A procedures Environmental Protection Agency methods 3540C and 8081A; followed by SGS India Pvt. Ltd. EDTA Ethylenediaminetetraacetic acid
OP Organophosphorus pesticide SDS-PAGE Sodium dodecyl sulfate—Polyacrylamide gel electrophoresis
EC Effective Concentration PVDF Polyvinylidenedifluoride
SP Synthetic pyrethroid HRP Horseradish peroxidase
ES Endosulfan pesticide DTPA Diethylene triamine pentaacetic acid
Experimental treatments D0 (control)
D1 (5 % OP + 1.5 % SP + 5.5 % ES)
D2 (12.5 % OP + 4 % SP + 15 % ES)
D3 (20 % OP + 6.5 % SP + 23.5 % ES)
D4 (25 % OP + 8 % SP + 29 % ES)
D5 (30 % OP + 10 % SP + 35 % ES)
Tris–HCl Tris (2-Amino-2-hydroxymethyl-propane-1,3-diol)—Hydrochloric acid
SOD Superoxide dismutase CAT Catalase

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, P., Rana, S., Sarkar, S. et al. Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie 46, 107–129 (2015). https://doi.org/10.1007/s13592-014-0308-z

Download citation

Keywords

  • Apis cerana
  • Apis dorsata
  • enzyme
  • super-oxide dismutase
  • catalase
  • xanthine oxidase
  • insecticide