Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes

Abstract

The ability to distinguish feral and managed honeybees (Apis mellifera) has applications in studies of population genetics, parasite transmission, pollination, interspecific interactions, and bee breeding. We evaluated a diagnostic test based on theoretical differences in stable carbon isotope ratios generated by supplemental feeding. We evaluated (1) if carbon isotope ratios can distinguish feral and managed honeybees and (2) the temporal persistence of the signal after discontinuation of supplemental feeding. We compared carbon isotope ratios from four types of experimental colonies: feral, managed with and without supplemental feed, and managed with 13C-labeled glucose added to supplemental feed. There was a significant difference between the isotopic signatures of colonies receiving supplemental feed and unfed feral colonies. This difference, however, only persisted for a few weeks after supplemental feeding was discontinued, suggesting that this method may work best under a narrow range of conditions. This work highlights the potential for exploiting temporal turnover of carbon in bee tissues as a tool for studying nutrient flow in honeybee colonies.

This is a preview of subscription content, log in to check access.

Figure 1.
Figure 2.

References

  1. Bates, D. Maechler, M., Bolker, B. (2011). lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4. Accessed March 2013

  2. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135

    PubMed  Article  Google Scholar 

  3. Brosi, A.R., Harkins, W.D. (1937) The abundance ratio of the isotopes in natural or isotopically separated carbon. Phys. Rev. 52, 472–474

    Article  CAS  Google Scholar 

  4. Brosi, B.J., Daily, G.C., Chamberlain, C.P., Mills, M. (2009) Detecting changes in habitat-scale bee foraging in a tropical fragmented landscape using stable isotopes. Forest Ecol. Manag. 258, 1846–1855

    Article  Google Scholar 

  5. Craig, H. (1957) Isotopic standards for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta. 12, 113–140

    Google Scholar 

  6. Daniele, G., Wytrychowski, M., Batteau, M., Guibert, S., Casabianca, H. (2011) Stable isotope ratio measurements of royal jelly samples for controlling production procedures: impact of sugar feeding. Rapid Commun. Mass Spectrom. 25, 1929–1932

    PubMed  Article  CAS  Google Scholar 

  7. Doner, L.W., White, J.W. (1977) Carbon-13/Carbon-12 ratio is relatively uniform among honeys. Science 197, 891–892

    PubMed  Article  CAS  Google Scholar 

  8. Elflein, L., Raezke, K. (2008) Improved detection of honey adulteration by measuring differences between 13C/12C stable carbon isotope ratios of protein and sugar compounds with a combination of elemental analyzer-isotope ratio mass spectrometry and liquid chromatography-isotope ratio mass spectrometry (δ13 C-EA/LC-IRMS). Apidologie 39, 574–587

    Article  CAS  Google Scholar 

  9. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T. (1989) Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Phys. 40, 503–537

    Article  CAS  Google Scholar 

  10. Graham, J.M. (1992) The Hive and the Honey Bee. Dadant & Sons, Hamilton

    Google Scholar 

  11. Hobson, K.A. (1999) Tracing origins and migration of wildflower using stable isotopes: a review. Oecologia 120, 314–326

    Article  Google Scholar 

  12. Hothorn, T., Bretz, F., Westfall, P. (2008) Simultaneous Inference in General Parametric Models. Biom. J. 50(3), 346–363

    PubMed  Article  Google Scholar 

  13. Kelly, J.F. (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool. 78, 1–27

    Article  Google Scholar 

  14. Kennedy, B.P., Folt, C.L., Blum, J.D., Chamberlain, C.P. (1997) Natural isotopic markers in salmon. Nature 387, 766–767

    Article  CAS  Google Scholar 

  15. Koziet, J., Rossmann, A., Martin, G.J., Ashurst, P.R. (1993) Determination of carbon-13 content of sugars of fruit and vegetable juices: A European inter-laboratory comparison. Anal. Chim. Acta 271, 31–38

    Article  Google Scholar 

  16. Martin, S.J., Highfield, A.C., Bretell, L., Villalobos, E.M., Buge, G.E., Powell, M., Nikaido, S., Schroeder, D.C. (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306

    PubMed  Article  CAS  Google Scholar 

  17. O’Brien, D.M., Schrag, D.P., del-Rio, C.M. (2000) Allocation to reproduction in a hawkmoth: a quantitative analysis using stable carbon isotopes. Ecology 81, 2822–2831

    Article  Google Scholar 

  18. Oldroyd, B.P. (2007) What’s killing American honey Bees? PLoS Biol 5, 1195–1199

    Article  CAS  Google Scholar 

  19. Ostrom, P.H., Colunga-Garcia, M., Gage, S.H. (1997) Establishing pathways of energy flow for insect predators using stable isotope ratios: field and laboratory evidence. Oecologia 109, 108–113

    Article  Google Scholar 

  20. Overmyer, J.P., MacNeil, M.A., Fisk, A.T. (2008) Fractionation and metabolic turnover of carbon and nitrogen stable isotopes in black fly larvae. Rapid Commun. Mass Spectrom. 22, 694–700

    PubMed  Article  CAS  Google Scholar 

  21. Oxley, P., Spivak, M., Oldroyd, B. (2010) Six quantitative trait loci influence task thresholds for hygienic behavior in honeybees (Apis mellifera). Mol. Ecol. 19, 1452–1461

    PubMed  Article  CAS  Google Scholar 

  22. Peterson, B.J., Fry, B. (1987) Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320

    Article  Google Scholar 

  23. Phillips, D.L. (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127, 166–170

    PubMed  Article  CAS  Google Scholar 

  24. Potts, S.G., Beismeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E. (2010) Global pollinator declines: trends, impacts, and drivers. Trends Ecol. Evol. 25, 345–353

    PubMed  Article  Google Scholar 

  25. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/. Accessed March 2013

  26. Rosenkranz, P., Aumeier, P., Ziegelmann, B. (2010) Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119

    PubMed  Article  Google Scholar 

  27. Sakagami, S.F. (1953) Untersuchungen ber die Arbeitsteilung in einem Zwergvolk der Honigbiene. Beitr ge zue Biologie des Bienenvolkes, Apis mellifera L. I. Jap. J. Zool. 11, 117–185

    Google Scholar 

  28. Schmidt, J. (1994) Attraction of reproductive honey-bee swarms to artificial nests by Nasonov pheromone. J. Chem. Ecol. 20, 1053–1056

    PubMed  Article  CAS  Google Scholar 

  29. Seeley, T.D. (2007) Honey bees of the Arnot Forest: a population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38, 19–29

    Article  Google Scholar 

  30. Spivak, M., Mader, E., Vaughan, M., Euliss Jr., N.H. (2011) The plight of the bees. Environ. Sci. & Technol. 45, 1–34

    Article  Google Scholar 

  31. Venables, W.N., Ripley, B.D. (2002) Modern Applied Statistics with S, 4th edn. Springer, New York

    Google Scholar 

  32. Winston, M.L., Fergusson, L.A. (1985) The effect of worker loss on temporal caste structure in colonies of the honey bee (Apis mellifera L.). Can. J. Zool. 63, 777–780

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Nolan, P. Quinn, and N. Weaver for their contributions to the apiary management and B. Tran, E. Lake, and D. Gruenewald for their assistance in pinning bees in the lab. H. Briggs, E. Dobbs, D. Tarpy, and two anonymous reviewers provided constructive comments on the manuscript. B. Ryan and D. Barr both provided helpful discussion on analytic chemistry and the use of a microbalance. We are grateful to the Chattahoochee-Oconee National Forest for permission to collect feral swarms. This work was funded by the US Department of Agriculture (NIFA 2011-67013-30131 to BJB, KSD, and J. De Roode), the US National Institutes of Health (R01-109501-01, part of the joint NIH-NSF-USDA Ecology and Evolution of Infectious Diseases program, to J. De Roode, BJB, and KSD), Emory University (Scholarly Inquiry and Research at Emory grants and the James G. Lester Environmental Studies Research Grant, both to LMA), and the North American Pollinator Protection Campaign (Honey Bee Health Grant to BJB, KSD, and LLM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Berry J. Brosi.

Additional information

Distinction entre abeilles sauvages et abeilles de ruches ( Apis mellifera ) par l’utilisation d’isotopes stables du carbone

colonie naturelle / fractionnement isotopique / photosynthèse / carbone

Unterscheidung von wildlebenden und imkerlich gehaltenen Honigbienen ( Apis mellifera ) anhand von stabilen Kohlenstoff-Isotopen

Wildlebende Honigbienen / stabile Isotope / Kohlenstoff / Photosyntheseverlauf / isotopische Fraktionierung

Manuscript editor: David Tarpy

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anderson, L.M., Dynes, T.M., Berry, J.A. et al. Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes. Apidologie 45, 653–663 (2014). https://doi.org/10.1007/s13592-014-0283-4

Download citation

Keywords

  • feral honeybees
  • stable isotopes
  • carbon
  • photosynthesis pathways
  • isotopic fractionation