Skip to main content
Log in

Thelytoky in the honey bee

  • Review article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Thelytoky, the asexual production of females, is rare in honey bees. However, it is ubiquitous in workers of the Cape honey bee Apis mellifera capensis. Thelytoky allows some workers to be reincarnated into the queen phenotype, and thereby selects for reproductive competition among workers. Thelytoky also acts as an exaptation for the emergence of reproductive parasites, the most extreme example of which is an entirely clonal ‘cancerous’ lineage of workers (the Clone) that lethally parasitises colonies of another subspecies Apis mellifera scutellata. The Clone is an enigma because thelytoky results in the accumulation of homozygosity at any loci that are free to recombine, yet the Clone retains considerable heterozygosity. The Clone pays a cost for its thelytoky: the selective removal of homozygous offspring at each generation. We propose that workers, queens and Clones have differing abilities to endure the costs and benefits of sex and asexuality, accounting for the heterogeneous distribution of reproductive strategies across the A. mellifera capensis population. We further suggest that multiple factors must fall into place for thelytoky to emerge as an effective reproductive strategy in a honey bee population, and that geographic isolation resulting in genetic drift and founder effects may have enabled thelytoky to emerge in A. mellifera capensis. Finally, we consider the honey bee in the broader context of haplodiploid Hymenoptera, and argue that constraints on the evolution of sex in non-haplodiploid taxa may make sexual reproduction an evolutionary ‘one-way street’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Allsopp, M. (1992) The Capensis calamity. South African Bee Journal 64, 52–55

    Google Scholar 

  • Allsopp, M., Crewe, R.M. (1993) The Cape honeybee as a Trojan horse rather than the hordes of Jenghiz Khan. Am. Bee. J. 133, 121–123

    Google Scholar 

  • Allsopp, M., Calis, J.M., Boot, W. (2003) Differential feeding of worker larvae affects caste characters in the Cape honeybee, Apis mellifera capensis. Behav. Ecol. Sociobiol. 54, 555–561

    Google Scholar 

  • Allsopp, M., Beekman, M., Gloag, R., Oldroyd, B.P. (2010) Maternity of replacement queens in the thelytokous Cape honey bee Apis mellifera capensis. Behav. Ecol. Sociobiol. 64, 567–574

    Google Scholar 

  • Amdam, G.V., Seehuus, S.C. (2006) Order, disorder, death: lessons from a superorganism. Adv. Cancer Res. 95, 31–60

    PubMed Central  PubMed  Google Scholar 

  • Amdam, G.V., Norberg, K., Fondrk, M.K., Page, R.E. (2004) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc. Natl. Acad. Sci. USA 101, 11350–11355

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barron, A.B., Oldroyd, B.P., Ratnieks, F.L.W. (2001) Worker reproduction in honey-bees (Apis) and the anarchic syndrome: a review. Behav. Ecol. Sociobiol. 50, 199–208

    Google Scholar 

  • Baudry, E., Kryger, P., Allsopp, M., Koeniger, N., Vautrin, D., et al. (2004) Whole-genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis. Genetics 167, 243–252

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beekman, M., Oldroyd, B. (2008a) Who is the Queen's mother? Royal cheats in social insects. J. Biosci. 33, 159–161

    PubMed  Google Scholar 

  • Beekman, M., Oldroyd, B.P. (2008b) When workers disunite: intraspecific parasitism in eusocial bees. Annu. Rev. Entomol. 53, 19–37

    PubMed  CAS  Google Scholar 

  • Beekman, M., Calis, J.N.M., Boot, W.J. (2000) Parasitic honeybees get royal treatment. Nature 404, 723

    PubMed  CAS  Google Scholar 

  • Beekman, M., Good, G., Allsopp, M., Radloff, S., Pirk, C., et al. (2002) A non-policing honey bee colony (Apis mellifera capensis). Naturwissenschaften 89, 479–482

    PubMed  CAS  Google Scholar 

  • Beekman, M., Allsopp, M.H., Wossler, T.C., Oldroyd, B.P. (2008) Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa. Heredity 100, 13–18

    PubMed  CAS  Google Scholar 

  • Beekman, M., Allsopp, M.H., Jordan, L.A., Lim, J., Oldroyd, B.P. (2009) A quantitative study of worker reproduction in queenright colonies of the Cape honey bee, Apis mellifera capensis. Mol. Ecol. 18, 2722–2727

    PubMed  Google Scholar 

  • Beekman, M., Allsopp, M.H., Lim, J., Goudie, F., Oldroyd, B.P. (2011) Asexually produced Cape honeybee queens (Apis mellifera capensis) reproduce sexually. J. Hered. 102, 562–566

    PubMed  Google Scholar 

  • Beekman, M., Allsopp, M., Holmes, M., Lim, J., Noach-Pienaar, L.-A., et al. (2012) Racial mixing in South African honeybees: the effects of genotype mixing on reproductive traits of workers. Behav. Ecol. Sociobiol. 66, 897–904

    Google Scholar 

  • Bessoltane, N., Toffano-Nioche, C., Solignac, M., Mougel, F. (2012) Fine scale analysis of crossover and non-crossover and detection of recombination sequence motifs in the honeybee (Apis mellifera). PLoS Biol. 7, e36229

    CAS  Google Scholar 

  • Beye, M., Hasselmann, M., Fondrk, M.K., Page, R.E., Omholt, S.W. (2003) The gene cds is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114, 419–429

    PubMed  CAS  Google Scholar 

  • Beye, M., Gattermeier, I., Hasselmann, M., Gemp, T., Schioett, M., et al. (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res. 16, 1339–1344

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blacher P., Yagound B., Lecoutey E., Devinne P., Chameron S., et al. (2013) Drifting behaviour as an alternative reproductive strategy for social insect workers. Proc. R. Soc. B. doi: http://dx.doi.org/10.1098/rspb

  • Bull, J.J. (1994) Perspective—virulence. Evolution 48, 1423–1437

    Google Scholar 

  • Calis, J.N.M., Boot, W.J., Allsopp, M.H., Beekman, M. (2002) Getting more than a fair share: nutrition of worker larvae related to social parasitism in the Cape honey bee Apis mellifera capensis. Apidologie 33, 193–202

    Google Scholar 

  • Châline, N., Ratnieks, F.L.W., Burke, T. (2002) Anarchy in the UK: detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, Apis mellifera, colony using DNA microsatellites. Mol. Ecol. 11, 1795–1803

    PubMed  Google Scholar 

  • Chapman, N.C., Nanork, P., Gloag, R.S., Wattanachaiyingcharoen, W., Beekman, M., et al. (2009) Queenless colonies of the Asian red dwarf honey bee (Apis florea) are infiltrated by workers from other queenless colonies. Behav. Ecol. 20, 817–820

    Google Scholar 

  • Cobey, S. (1999) The African bee, Apis mellifera scutellata, threatened in her South African homeland by the Cape bee, Apis melliera capensis. Am. Bee. J. 139, 462–467

    Google Scholar 

  • Daly, H.V. (1966) Biological studies on Ceratina dallatorreana, an alien bee in California which reproduces by parthenogenesis (Hymenoptera: Apoidea). Ann. Entomol. Sco. Am. 59, 1138–1154

    Google Scholar 

  • Dietemann, V., Lubbe, A., Crewe, R.M. (2006a) Human factors facilitating the spread of a parasitic honey bee in South Africa. J. Econ. Entomol. 99, 7–13

    PubMed  Google Scholar 

  • Dietemann, V., Pflugfelder, J., Härtel, S., Neumann, P., Crewe, R. (2006b) Social parasitism by honeybee workers (Apis mellifera capensis Esch.): evidence for pheromonal resistance to host queen's signals. Behav. Ecol. Sociobiol. 60, 785–793

    Google Scholar 

  • Engelstadter, J. (2008) Constraints on the evolution of asexual reproduction. BioEssays 30, 1138–1150

    PubMed  CAS  Google Scholar 

  • Engelstadter, J., Sandrock, C., Vorburger, C. (2010) Contagious parthenogenesis, automixis, and a sex determination meltdown. Evolution 65, 501–511

    PubMed  Google Scholar 

  • Fournier, D., Estoup, A., Orivel, R.M., Foucaud, J., Jourdan, H., et al. (2005) Clonal reproduction by males and female in the little fire ant. Nature 435, 1230–1234

    PubMed  CAS  Google Scholar 

  • Gladyshev, E., Meselson, M. (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc. Natl. Acad. Sci. USA 105, 5139–5144

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goudie, F., Allsopp, M.H., Beekman, M., Lim, J., Oldroyd, B.P. (2012a) Heritability of worker ovariole number in the Cape honey bee Apis mellifera capensis. Insectes Soc. 59, 351–359

    Google Scholar 

  • Goudie, F., Allsopp, M.H., Beekman, M., Oxley, P.R., Lim, J., et al. (2012b) Maintenance and loss of heterozygosity in a thelytokous lineage of honey bees (Apis mellifera capensis). Evolution 66, 1897–1906

    PubMed  Google Scholar 

  • Goudie, F., Allsopp, M.H., Oldroyd, B.P. (2014) Selection on overdominant genes maintains heterozygosity along multiple chromosomes in a clonal lineage of honey bee. Evolution 68, 125–136

    Google Scholar 

  • Greeff, J.M. (1996) Effects of thelytokous worker reproduction on kin-selection and conflict in the Cape honeybee, Apis mellifera capensis. Philos. Trans.: Biol Sci. 351, 617–625

    Google Scholar 

  • Greeff, J.M., Villet, M.H. (1993) Deducing the coefficient of relationship by the amount of recombination produced during automictic parthneogenesis. Heredity 70, 499–502

    Google Scholar 

  • Gruber M., Hoffmann B., Ritchie P., Lester P.. (2010) Crazy ant sex: genetic caste determination, clonality, and inbreeding in a apopulation of invasive Yellow crazy ants. In: Nash D.R., den Boer S.P.A., Fine Licht H.H., and Boomsma J.J. (Eds.), XVI Congress of the International Union for the Study of Social Insects, Copenhagen, Denmark.

  • Hagimori, T., Abe, Y., Date, S., Miura, K. (2006) The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr. Microbiol. 52, 97–101

    PubMed  CAS  Google Scholar 

  • Hamilton, W.D. (1964) The genetical evolution of social behaviour. I & II. J. Theor. Biol. 7, 1–52

    PubMed  CAS  Google Scholar 

  • Härtel, S., Neumann, P., Kryger, P., von der Heide, C., Moltzer, G., et al. (2006) Infestation levels of Apis mellifera scutellata swarms by socially parasitic Cape honeybee workers (Apis mellifera capensis). Apidologie 37, 462–470

    Google Scholar 

  • Härtel, S., Wossler, T., Moltzer, G.-J., Crewe, R., Moritz, R.A., et al. (2011) Pheromone-mediated reproductive dominance hierarchies among pseudo-clonal honeybee workers (Apis mellifera capensis). Apidologie 42, 659–668

    Google Scholar 

  • Hepburn, H.R., Allsopp, M.H. (1994) Reproductive conflict between honeybees: usurpation of Apis mellifera scutellata colonies by Apis mellifera capensis. Suid-Afrikaanse Tydskrif vir Wetenskap 90, 247–249

    Google Scholar 

  • Hepburn, H.R., Crewe, R.M. (1990) Defining the Cape honeybee: reproductive traits of queenless workers. S. Afr. J. Sci. 86, 524–527

    Google Scholar 

  • Hepburn, H.R., Crewe, R.M. (1991) Portrait of the Cape honeybee, Apis mellifera capensis. Apidologie 22, 567–580

    Google Scholar 

  • Hepburn, H.R., Radloff, S.E. (1998) Honeybees of Africa. Springer, Berlin

    Google Scholar 

  • Heubel, K.U., Rankin, D.J., Kokko, H. (2009) How to go extinct by mating too much: population consequences of male mate choice and efficiency in a sexual-asexual species complex. Oikos 118, 513–520

    Google Scholar 

  • Hillesheim, E., Koeniger, N., Moritz, R.F.A. (1989) Colony performance in honeybees (Apis mellifera capensis Esch.) depends on the proportion of subordinate and dominant workers. Behav Ecol Sociobiol 24, 291–296

    Google Scholar 

  • Hölldobler, B., Wilson, E.O. (2008) The superorganism: the beauty, elegance, and strangeness of insect societies. W. W Norton, New York

  • Holmes, M.J., Oldroyd, B.P., Allsopp, M.H., Lim, J., Wossler, T.C., et al. (2010) Maternity of emergency queens in the Cape honey bee, Apis mellifera capensis. Mol. Ecol. 19, 2792–2799

    PubMed  CAS  Google Scholar 

  • Holmes, M.J., Oldroyd, B.P., Duncan, M., Allsopp, M.H., Beekman, M. (2013) Cheaters sometimes prosper: targeted worker reproduction in honeybee (Apis mellifera) colonies during swarming. Mol. Ecol. 22, 4298–4306

    PubMed  Google Scholar 

  • Huigens, M.E., Stouthamer, R. (2003) Parthenogenesis associated with Wolbachia. In: Bourtzis, K., Miller, T.A. (eds.) Insect symbiosis, pp. 247–266. CRC Press, Boca Raton

    Google Scholar 

  • Jarosch, A., Stolle, E., Crewe, R.M., Moritz, R.F.A. (2011) Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera). Proc. Natl. Acad. Sci. USA 108, 15282–15287

    PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson, B.R., Linksvayer, T.A. (2010) Deconstructing the superorganism: social physiology, reproductive groundplans, and sociogenomics. Q. Rev. Biol. 85, 57–79

    PubMed  Google Scholar 

  • Jones, J., Myerscough, M., Graham, S., Oldroyd, B.P. (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305, 402–404

    PubMed  CAS  Google Scholar 

  • Jordan, L.A., Allsopp, M.H., Oldroyd, B.P., Wossler, T.C., Beekman, M. (2008) Cheating honeybee workers produce royal offspring. Proc. R. Soc. Lond. B. Biol. Sci. 275, 345–351

    Google Scholar 

  • Keller, L. (2007) Uncovering the biodiversity of genetic and reproductive systems: time for a more open approach—American Society of Naturalists E.O. Wilson award winner address. Am. Nat. 169, 1–8

    PubMed  Google Scholar 

  • Kobayashi, K., Hasegawa, E., Ohkawara, K. (2008) Clonal reproduction by males of the ant Vollenhovia emeryi (Wheeler). Entomol. Sci. 11, 167–172

    Google Scholar 

  • Koetz A. (2013) The Asian honey bee (Apis cerana) and its strains—with special focus on Apis cerana Java genotype. Literature review. Brisbane.

  • Kryger, K. (2001) The Capensis pseudo-clone, a social parasite of African honey bees. In: Menzel, R., Rademacher, E. (eds.) International Union for the Study of Social Insects, p. 208. IUSSI, Berlin

    Google Scholar 

  • Lattorff, H.M.G., Kryger, P., Moritz, R.F.A. (2005) Queen developmental time and fitness consequences for queens of clonal social parasitic honeybees (A. m. capensis) and its host A. m. scutellata. Insectes Soc 52, 238–241

    Google Scholar 

  • Levin, B.R. (1996) The evolution and maintenance of virulence in microparasites. Emerg. Infect. Dis. J 2, 93–102

    CAS  Google Scholar 

  • Mackensen, O. (1943) The occurrence of parthenogenetic females in some strains of honey-bees. J. Econ. Entomol. 36, 465–467

    Google Scholar 

  • Maynard Smith, J. (1978) The Evolution of Sex. Cambridge University Press

  • Mark Welch, J.L., Mark Welch, D.B., Meselson, M. (2004) Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proc. Natl. Acad. Sci. USA 101, 1618–1621

    PubMed  Google Scholar 

  • Martin, S., Wossler, T., Kryger, P. (2002) Usurpation of African Apis mellifera scutellata colonies by parasitic Apis mellifera capensis workers. Apidologie 33, 215–232

    Google Scholar 

  • Mattila, H.R., Seeley, T.D. (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364

    PubMed  CAS  Google Scholar 

  • Montague, C.E., Oldroyd, B.P. (1998) The evolution of worker sterility in honey bees: an investigation into a behavioral mutant causing failure of worker policing. Evolution 52, 1408–1415

    Google Scholar 

  • Moritz, R. (2002) Population dynamics of the Cape bee phenomenon: the impact of parasitic laying worker clones in apiaries and natural populations. Apidologie 33, 233–244

    Google Scholar 

  • Moritz, R.F.A., Fuchs, S. (1998) Organization of honeybeee colonies: characteristics and consequences of a superorganism concept. Apidologie 29, 7–21

    Google Scholar 

  • Moritz, R.F., Haberl, M. (1994) Lack of meiotic recombination in thelytokous parthenogenesis of laying workers of Apis mellifera capensis (the Cape honeybee). Heredity 73, 98–102

    Google Scholar 

  • Moritz, R.F.A., Southwick, E.E. (1992) Bees as superorganisms. Springer, Berlin

    Google Scholar 

  • Moritz, R.F.A., Kryger, P., Allsopp, M.H. (1996) Competition for royalty in bees. Nature 384, 31

    CAS  Google Scholar 

  • Moritz, R.F.A., Kryger, P., Allsopp, M.H. (1999) Lake of worker policing in the Cape honeybee (Apis mellifera capensis). Behaviour 136, 1079–1092

    Google Scholar 

  • Moritz, R.F.A., Pflugfelder, J., Crewe, R.M. (2003) Lethal fighting between honeybee queens and parasitic workers (Apis mellifera). Naturwissenschaften 90, 378–381

    PubMed  CAS  Google Scholar 

  • Moritz, R.F.A., Lattorff, H.M.G., Crewe, R.M. (2004) Honeybee workers (Apis mellifera capensis) compete for producing queen-like pheromone signals. Proc. R. Soc. Lond. B. Biol. Sci. 271(Supplement 3), S98–S100

    CAS  Google Scholar 

  • Moritz, R., Pirk, C.W.W., Hepburn, H.R., Neumann, P. (2008) Short-sighted evolution of virulence in parasitic honeybee workers (Apis mellifera capensis Esch.). Naturwissenschaften 95, 507–513

    PubMed  CAS  Google Scholar 

  • Moritz, R.F.A., Lattorff, H.M.G., Crous, K.L., Hepburn, H.R. (2011) Social parasitism of queens and workers in the Cape honeybee (Apis mellifera capensis). Behav. Ecol. Sociobiol. 65, 735–740

    Google Scholar 

  • Nanork, P., Paar, J., Chapman, N.C., Wongsiri, S., Oldroyd, B.P. (2005) Asian honey bees parasitize the future dead. Nature 437, 829

    PubMed  CAS  Google Scholar 

  • Nanork, P., Chapman, N.C., Wongsiri, S., Lim, J., Gloag, R.S., et al. (2007) Social parasitism by workers in queenless and queenright Apis cerana colonies. Mol. Ecol. 16, 1107–1114

    PubMed  CAS  Google Scholar 

  • Neumann, P., Hepburn, H.R. (2002) Behavioural basis for social parasitism of Cape honeybees (Apis mellifera capensis). Apidologie 33, 165–192

    Google Scholar 

  • Neumann, P., Moritz, R.F.A. (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav. Ecol. Sociobiol. 52, 271–281

    Google Scholar 

  • Neumann, P., Radloff, S.E., Moritz, R.F.A., Hepburn, H.R., Reece, S.L. (2001) Social parasitism by honeybee workers (Apis mellifera capensis Escholtz): host finding and resistance of hybrid host colonies. Behav. Ecol. 12, 419–428

    Google Scholar 

  • Neumann, P., Härtel, S., Kryger, P., Crewe, R.M., Moritz, R.F.A. (2011) Reproductive division of labour and thelytoky result in sympatric barriers to gene flow in honeybees (Apis mellifera L.). J. Evol. Biol. 24, 286–294

    PubMed  CAS  Google Scholar 

  • Normark, B.B. (2003) The evolution of alternative genetic systems in insects. Annu. Rev. Entomol. 48, 397–423

    PubMed  CAS  Google Scholar 

  • Oldroyd, B.P. (2002) The Cape honeybee: an example of a social cancer. Trends Ecol. Evol. 17, 249–251

    Google Scholar 

  • Oldroyd, B.P., Beekman, M. (2008) Effects of selection for honey bee worker reproduction on foraging traits. PLoS Biol. 6, e56

    PubMed Central  PubMed  Google Scholar 

  • Oldroyd, B.P., Fewell, J.H. (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413

    PubMed  Google Scholar 

  • Oldroyd, B. P., Smolenski, A. J., Cornuet, J.-M., Crozier, R. H. (1994) Anarchy in the beehive. Nature 371, 749

    Google Scholar 

  • Oldroyd, B.P., Allsopp, M.H., Gloag, R.S., Lim, J., Jordan, L.A., et al. (2008) Thelytokous parthenogenesis in unmated queen honeybees (Apis mellifera capensis): central fusion and high recombination rates. Genetics 180, 359–366

    PubMed Central  PubMed  Google Scholar 

  • Oldroyd, B.P., Allsopp, M.H., Lim, J., Beekman, M. (2011) A thelytokous lineage of socially parasitic honey bees has retained heterozygosity despite at least 10 years of inbreeding. Evolution 65, 860–868

    PubMed  Google Scholar 

  • Onions, G.W. (1912) South African ‘fertile worker bees’. Agr. J. U. S. Afr. 1, 720–728

    Google Scholar 

  • Otto, S.P., Gerstein, A.C. (2006) Why have sex? The population genetics of sex and recombination. Biochem. Soc. Trans. 34(Part 4), 519–522

    PubMed  CAS  Google Scholar 

  • Page, R.E. (2013) The spirit of the hive. The mechanisms of social evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Palmer, K.A., Oldroyd, B.P. (2000) Evolution of multiple mating in the genus Apis. Apidologie 31, 235–248

    Google Scholar 

  • Pearcy, M., Aron, S., Doums, C., Keller, L. (2004) Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306, 1780–1783

    PubMed  CAS  Google Scholar 

  • Pearcy, M., Hardy, O., Aron, S. (2006) Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96, 377–382

    PubMed  CAS  Google Scholar 

  • Phiancharoen, M., Pirk, C.W.W., Radloff, S., Hepburn, R. (2010) Clinal nature of the frequencies of ovarioles and spermathecae in Cape worker honeybees, Apis mellifera capensis. Apidologie 41, 129–134

    Google Scholar 

  • Pirk, C.W.W., Neumann, P., Hepburn, H.R. (2002) Egg laying and egg removal by workers are positively correlated in queenright Cape honeybee colonies (Apis mellifera capensis). Apidologie 33, 203–211

    Google Scholar 

  • Rabeling, C., Kronauer, D.J.C. (2013) Thelytokous parthenogenesis in eusocial hymenoptera. Annu. Rev. Entomol. 58, 273–292

    PubMed  CAS  Google Scholar 

  • Ratnieks, F.L.W. (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am. Nat. 132, 217–236

    Google Scholar 

  • Ratnieks, F.L.W., Visscher, P.K. (1989) Worker policing in honeybees. Nature 342, 796–797

    Google Scholar 

  • Ravary, F., Jaisson, P. (2004) Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insectes Soc. 51, 67–73

    Google Scholar 

  • Ruttner, F. (1977) The problem of the cape bee (Apis mellifera capensis Escholtz): parthenogenesis—size of population—evolution. Apidologie 8, 281–294

    Google Scholar 

  • Seeley, T.D. (1989) The honey bee colony as a superorganism. Am. Scientist 77, 546–553

    Google Scholar 

  • Seeley, T.D. (2010) Honeybee democracy. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Seeley, T.D., Tarpy, D.R. (2007) Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B 274, 67–72

    PubMed Central  PubMed  Google Scholar 

  • Siddle, H.V., Kaufman, J. (2013) A tale of two tumours: comparison of the immune escape strategies of contagious cancers. Mol. Immunol. 55, 190–193

    PubMed Central  PubMed  CAS  Google Scholar 

  • Solignac, M., Vautrin, D., Baudry, E., Mougel, F., Loiseau, A., et al. (2004) A microsatellite-based linkage map of the honeybee, Apis mellifera L. Genetics 167, 253–262

    PubMed Central  PubMed  CAS  Google Scholar 

  • Solignac, M., Mougel, F., Vautrin, D., Monnerot, M., Cornuet, J.-M. (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol. 8, R66

    PubMed Central  PubMed  Google Scholar 

  • Sumner, S., Keller, L. (2008) Social evolution: reincarnation, free-riding and inexplicable modes of reproduction. Curr. Biol. 18, R206–R207

    PubMed  CAS  Google Scholar 

  • Suomalainen, E., Saura, A., Lokki, J. (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Tiedemann, R., Moll, K., Paulus, K.B., Schlupp, I. (2005) New microsatellite loci confirm hybrid origin, parthenogenetic inheritance, and mitotic gene conversion in the gynogenetic Amazon molly (Poecilia formosa). Mol. Ecol. Notes 5, 586–589

    CAS  Google Scholar 

  • Tribe, G.D. (1983) What is the Cape bee? South African Bee Journal 55, 77–87

    Google Scholar 

  • Verma, S., Ruttner, F. (1983) Cytological analysis of thelytokous parthenogenesis in the Cape honey bee Apis mellifera capensis. Apidologie 14, 41–57

    Google Scholar 

  • Visscher, P.K. (1989) A quantitative study of worker reproduction in honey bee colonies. Behav. Ecol. Sociobiol. 25, 247–254

    Google Scholar 

  • Weinberg, R. (1998) One renegade cell: the quest for the origins of cancer. Phoenix, London

    Google Scholar 

  • Wenseleers, T., Alves, D.A., Francoy, T.M., Billen, J., Imperatiz-Fonseca, V.L. (2011) Intraspecific queen parasitism in a highly eusocial bee. Biol. Lett. 7, 173–176

    PubMed Central  PubMed  Google Scholar 

  • Wheeler, W.M. (1911) The ant-colony as an organism. Morphology 22, 307–325

    Google Scholar 

  • White, M. (1984) Chromosomal mechanisms in animal reproduction. Bull. Zoo. 51, 1–23

    Google Scholar 

  • Winston, M.L. (1991) The biology of the honey bee. Harvard University Press, Harvard

    Google Scholar 

  • Wirtz, P., Beetsma, J. (1972) Induction of caste differentiation in the honey bee (Apis mellifera) by juvenile hormone. Entomol. Exp. Appl. 15, 517–520

    CAS  Google Scholar 

  • Woyke, J. (1963) What happens to diploid drone larvae in a honeybee colony? J. Apic. Res. 2, 73–75

    Google Scholar 

  • Zchori-Fein, E., Gottlieb, Y., Kelly, S.E., Brown, J.K., Wilson, J.M., et al. (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc. Natl. Acad. Sci. USA 98, 12555–12560

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Goudie.

Additional information

Manuscript editor: Stan Schneider

Parthénogenèse thélytoque chez l'abeille

Apis mellifera / Apis mellifera capensis / reproduction asexuée / thélytocie / parasitisme reproducteur

Thelytökie bei Honigbienen

Apis mellifera / Apis mellifera capensis / asexuale Reproduction / Thelytökie / reproduktiver Parasitismus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goudie, F., Oldroyd, B.P. Thelytoky in the honey bee. Apidologie 45, 306–326 (2014). https://doi.org/10.1007/s13592-013-0261-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-013-0261-2

Keywords

Navigation