Apidologie

, Volume 44, Issue 6, pp 621–629 | Cite as

Honey bees and bumble bees respond differently to inter- and intra-specific encounters

  • Shelley R. Rogers
  • Peter Cajamarca
  • David R. Tarpy
  • Hannah J. Burrack
Original article

Abstract

Multiple bee species may forage simultaneously at a common resource. Physical encounters among these bees may modify their subsequent foraging behavior and shape pollinator distribution and resource utilization in a plant community. We observed physical encounters between honey bees, Apis mellifera, and bumble bees, Bombus impatiens, visiting artificial plants in a controlled foraging arena. Both species were more likely to leave the plant following an encounter with another bee, but differed in their responses to intra- and inter-specific encounters. A. mellifera responded similarly to an encounter with either species. However, most B. impatiens that encountered A. mellifera discontinued foraging at the observed plant, but exhibited only a slight decrease in foraging following an intraspecific encounter. Interactions between bees that elicit changes in foraging behavior may have important implications for the pollination of wild and managed plants.

Keywords

Apis Bombus competition interspecific avoidance pollination 

References

  1. Baude, M., Dajoz, I., Danchin, E. (2008) Inadvertent social information in foraging bumblebees: effects of flower distribution and implications for pollination. Anim. Behav. 76, 1863–1873CrossRefGoogle Scholar
  2. Baude, M., Danchin, E., Mugabo, M., Dajoz, I. (2011) Conspecifics as informers and competitors: an experimental study in foraging bumble-bees. Proc. R. Soc. B 278, 2806–2813PubMedCrossRefGoogle Scholar
  3. Breed, M. (1983) Nestmate recognition in honey bees. Anim. Behav. 31, 86–91CrossRefGoogle Scholar
  4. Cane, J.H., Payne, J. (1988) Foraging ecology of the bee Habropoda laboriosa (Hymenoptera, Anthophoridae), an oligolege of blueberries (Ericaceae, Vaccinium) in the southeastern United States. Ann. Entomol. Soc. Am. 81, 419–427Google Scholar
  5. Dawson, E.H., Chittka, L. (2012) Conspecific and heterospecific information use in bumblebees. PLoS. One. 7, e31444PubMedCrossRefGoogle Scholar
  6. Dedej, S., Delaplane, K. (2005) Net energetic advantage drives honey bees (Apis mellifera L) to nectar larceny in Vaccinium ashei Reade. Behav. Ecol. Sociobiol. 57, 398–403CrossRefGoogle Scholar
  7. Delaplane, K.S., Mayer, D.F. (2000) Crop Pollination by Bees. CABI, WallingfordCrossRefGoogle Scholar
  8. Donaldson-Matasci, M.C., DeGrandi-Hoffman, G., Dornhaus, A. (2013) Bigger is better: honeybee colonies as distributed information-gathering systems. Anim. Behav. 85, 585–592CrossRefGoogle Scholar
  9. Downs, S., Ratnieks, F. (2000) Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model. Behav. Ecol. 11, 326–333CrossRefGoogle Scholar
  10. Eickwort, G., Ginsberg, H. (1980) Foraging and mating-behavior in Apoidea. Annu. Rev. Entomol. 25, 421–446CrossRefGoogle Scholar
  11. Feinsinger, P. (1987) Effects of plant-species on each other’s pollination—is community structure influenced? Trends Ecol. Evol. 2, 123–126PubMedCrossRefGoogle Scholar
  12. Feldman, T., Morris, W., Wilson, W. (2004) When can two plant species facilitate each other’s pollination? Oikos 105, 197–207CrossRefGoogle Scholar
  13. Fontaine, C., Collin, C.L., Dajoz, I. (2008) Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010CrossRefGoogle Scholar
  14. Foster, R. (1992) Nestmate recognition as an inbreeding avoidance mechanism in bumble bees (Hymenoptera, Apidae). J. Kans. Entomol. Soc. 65, 238–243Google Scholar
  15. Gawleta, N., Zimmermann, Y., Eltz, T. (2005) Repellent foraging scent recognition across bee families. Apidologie 36, 325–330CrossRefGoogle Scholar
  16. Goodale, E., Nieh, J.C. (2012) Public use of olfactory information associated with predation in two species of social bees. Anim. Behav. 84, 919–924CrossRefGoogle Scholar
  17. Goulson, D. (2003) Effects of introduced bees on native ecosystems. Ann. Rev. Ecol. Evol. Syst. 34, 1–26CrossRefGoogle Scholar
  18. Greenleaf, S.S., Kremen, C. (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. U. S. A. 103, 13890–13895PubMedCrossRefGoogle Scholar
  19. Inouye, D. (1978) Resource partitioning in bumblebees—experimental studies of foraging behavior. Ecology 59, 672–678CrossRefGoogle Scholar
  20. Jean, R.P. (2005) Quantifying a rare event: pollen theft by honey bees from bumble bees and other bees (Apoidea: Apidae, Megachilidae) foraging at flowers. J. Kans. Entomol. Soc. 78, 172–175CrossRefGoogle Scholar
  21. Kawaguchi, L.G., Kazuharu, O., Toquenaga, Y. (2007) Contrasting responses of bumble bees to feeding conspecifics on their familiar and unfamiliar flowers. Proc. R. Soc. B 274, 2661–2667PubMedCrossRefGoogle Scholar
  22. Kawaguchi, L.G., Ohashi, K., Toquenaga, Y. (2006) Do bumble bees save time when choosing novel flowers by following conspecifics? Funct. Ecol. 20, 239–244CrossRefGoogle Scholar
  23. Leadbeater, E., Chittka, L. (2005) A new mode of information transfer in foraging bumblebees. Curr. Biol. 15, 447–448CrossRefGoogle Scholar
  24. Leadbeater, E., Chittka, L. (2011) Do inexperienced bumblebee foragers use scent marks as social information? Anim. Cogn. 14, 915–919PubMedCrossRefGoogle Scholar
  25. Lichtenberg, E.M., Imperatriz-Fonseca, V.L., Nieh, J.C. (2010) Behavioral suites mediate group-level foraging dynamics in communities of tropical stingless bees. Insectes Soc. 57, 105–113PubMedCrossRefGoogle Scholar
  26. Makino, T.T., Sakai, S. (2005) Does interaction between bumblebees (Bombus ignitus) reduce their foraging area?: bee removal experiments in a net cage. Behav. Ecol. Sociobiol. 57, 617–622CrossRefGoogle Scholar
  27. Michener, C. (1979) Biogeography of the bees. Ann. Mo. Bot. Gard. 66, 277–347CrossRefGoogle Scholar
  28. Mitchell, T.B. (1960) Bees of the eastern United States. I. N. C. Agric. Exp. Stn. Tech. Bull. 141, 1–538Google Scholar
  29. Mitchell, T.B. (1962) Bees of the eastern United States. II. N. C. Agric. Exp. Stn. Tech. Bull. 152, 1–557Google Scholar
  30. Morse, D. (1982) Foraging relationships within a guild of bumble bees. Insectes Soc. 29, 445–454CrossRefGoogle Scholar
  31. Newman, D.A., Thomson, J.D. (2005) Effects of nectar robbing on nectar dynamics and bumblebee foraging strategies in Linaria vulgaris (Scrophulariaceae). Oikos 110, 309–320CrossRefGoogle Scholar
  32. Ohashi, K., D’Souza, D., Thomson, J.D. (2010) An automated system for tracking and identifying individual nectar foragers at multiple feeders. Behav. Ecol. Sociobiol. 64, 891–897CrossRefGoogle Scholar
  33. Paini, D.R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: a review. Austral Ecol. 29, 399–407CrossRefGoogle Scholar
  34. Pinkus-Rendon, M., Parra-Tabla, V., Melendez-Ramirez, V. (2005) Floral resource use and interactions between Apis mellifera and native bees in cucurbit crops in Yucatan. Mexico Can. Entomol. 137, 441–449CrossRefGoogle Scholar
  35. Potts, S., Vulliamy, B., Dafni, A., Ne’eman, G., Willmer, P. (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642CrossRefGoogle Scholar
  36. Raine, N.E., Chittka, L. (2007) Flower constancy and memory dynamics in bumblebees (Hymenoptera: Apidae: Bombus). Entomol. Gen. 29, 179–199CrossRefGoogle Scholar
  37. Rogers, S. R. (2012) Pollination ecology of highbush blueberry agroecosystems. MS thesis, North Carolina State University, Raleigh, NCGoogle Scholar
  38. Sanchez-Lafuente, A.M., Rodriguez-Girones, M.A., Parra, R. (2012) Interaction frequency and per-interaction effects as predictors of total effects in plant–pollinator mutualisms: a case study with the self-incompatible herb Linaria lilacina. Oecologia 168, 153–165PubMedCrossRefGoogle Scholar
  39. Seeley, T.D. (1986) Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behav. Ecol. Sociobiol. 19, 343–354CrossRefGoogle Scholar
  40. Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C., Tscharntke, T. (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432CrossRefGoogle Scholar
  41. Stout, J., Goulson, D. (2001) The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Anim. Behav. 62, 183–189CrossRefGoogle Scholar
  42. Thomson, J.D. (1989) Reversal of apparent feeding preferences of bumble bees by aggression from Vespula wasps. Can. J. Zool. 67, 2588–2591CrossRefGoogle Scholar
  43. Westphal, C., Steffan-Dewenter, I., Tscharntke, T. (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 6, 961–965CrossRefGoogle Scholar
  44. Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L., et al. (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291CrossRefGoogle Scholar
  45. Williams, N.M., Kremen, C. (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol. Appl. 17, 910–921PubMedCrossRefGoogle Scholar
  46. Witjes, S., Eltz, T. (2007) Influence of scent deposits on flower choice: experiments in an artificial flower array with bumblebees. Apidologie 38, 12–18CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Shelley R. Rogers
    • 1
  • Peter Cajamarca
    • 1
  • David R. Tarpy
    • 1
  • Hannah J. Burrack
    • 1
  1. 1.Department of EntomologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations